

Mehrkanalige Audiosignalverarbeitung für Mikrofone in geräuschbehafteten Umgebungen

Simon Grimm, Jürgen Freudenberger | 07.07.2017 | Institut für Systemdynamik, HTWG Konstanz

Outline

Problemstellung und grundsätzliche Idee

Das Signal Modell

Microphone Beamforming - Beispiele Delay-and-Sum Beamformer Differential Beamforming

Der Multichannel Wiener Filter

Ergebnisse

Hörbeispiele

Zusammenfassung

Problemstellung

- Sprachsignale werden bei Übertragung mit Mikrofonen (Freisprecheinrichtung, Mobiltelefon, Hörgeräte) oft in der Qualität beeinflusst
- Ursachen:
 - \rightarrow Hintergrundgeräusche (z.B. Automobil)
 - \rightarrow Windgeräusche (z.B. Hörgeräte)

 \rightarrow Aber auch Einfluss von Akustik durch Nachhall, Reflexionen und spektrale Verfärbungen (z.B. Telefonkonferenz Scenario - "Konferenz-Spinne")

Lösungsansätze

Nutzung von mehreren Mikrofonen zur Signalübertragung:

$\rightarrow \! Ausnutzung$ der räumlichen Eigenschaften der Stör- und Nutzsignale

- großer Mikrofonabstand: "Spatial Sampling": Ausnutzen der unterschiedlichen Übertragungswege vom Sprecher zu den Mikrofonen
- ▶ kleiner Mikrofonabstand: Aufbau von Mikrofonarrays für richtungsselektive Signalerfassung ("Beamforming")
 → aber auch: Ausnutzen der unterschiedlichen Geräuscheigenschaften an den Mikrofonen! (z.B. Wind)

Lösungsansätze

Filterung der Signale durch Schätzung der statistischen Eigenschaften von Nutz-und Störsignalen

- Ausnutzung der Eigenschaften des zeitlichen Verlaufs (stationär/instationär)
- Ausnutzung der spektralen Eigenschaften (Leistungsdichtespektren)
- Ausnutzung der statistischen Zusammenhänge (Korrelationsmatrizen)

Das Signal Modell

$$N_i(\mathbf{v})$$

$$X(\mathbf{v})H_i(\mathbf{v})$$

$$Y_i(\mathbf{v})$$

$$Y_i(\kappa,\nu) = X(\kappa,\nu)H_i(\nu) + N_i(\kappa,\nu)$$
(1)

- ▶ Y_i: i^{tes} Mikrofonsignal
- *H_i*: Akustische Übertragungsfunktion vom Sprecher zum *i^{ten}* Mikrofon
- ► *N_i*: Geräuschterm am *i^{ten}* Mikrofon
- ► X: Nutzsprechersignal
- (κ, ν) : Zeit und Frequenzindex

Gesamtsystem

Delay-and-Sum

Delay-and-Sum

MEMS WNR | Simon Grimm, Jürgen Freudenberger | 07.07.2017 | ISD Konstanz

Differential Beamforming = Delay and Substract Beamforming

- Durch geeignete Wahl des Delayelements \(\tau\) lässt sich Schall aus bestimmten Richtungen unterdrücken
- d: Abstand der Mikrofone zueinander
- c: Schallgeschwindigkeit (ca. $343\frac{m}{s}$)

Differential Beamforming

Beam Patterns

Hypercardioid: $\tau = d/(c \cdot 3)$

Der Multichannel Wiener Filter

- Benötigt die Schätzung der Statistik der Sprach- und Geräuschterme (Korrelationsmatrizen) zwischen den Mikrofonsignalen
 Schätzung der Auto- und Kreuzleistungsdichtespektren!
- Schätzung lässt sich durch statistische Eigenschaften von Nutz- und Störsignal realisieren (stationär/instationär, korreliert/dekorreliert)
- MWF lässt sich in einen Beamformeranteil und einen Geräuschreduktionsfilter aufteilen

Geräuschreduktionsfilter (einkanaliger Fall)

Wiener Filter basiert auf Gewichtung des Mikrofonsignals abhängig von Verhältnis der Sprach- und Störsignalleistung:

$$G_{WF}(\nu) = \frac{P_s(\nu)}{P_s(\nu) + P_n(\nu)}$$
(2)

 Optimale Geräuschunterdrückung hinsichtlich des minimalen quadratischen Fehlers.

$$P_s << P_n: G_{WF}
ightarrow 0 \ (-\infty \ dB)$$

 $P_s >> P_n: G_{WF}
ightarrow 1 \ (0 \ dB)$

Spectrogram - Wind and Car Noise

MEMS WNR | Simon Grimm, Jürgen Freudenberger | 07.07.2017 | ISD Konstanz

Hörbeispiele

Single Microphone Output

Algorithm Output

Wind and Car Noise reduced signal

Zusammenfassung

- Durch die Erweiterung von einem auf mehrere Mikrofone lässt sich ein Gewinn hinsichtlich der
 - $\rightarrow \, {\sf Hintergrundger} \ddot{a} {\sf uschreduktion}$
 - $\rightarrow \mathsf{Windger\ddot{a}}\mathsf{uschreduktion}$
 - \rightarrow und dem Einfluss der Akustik
 - im Vergleich zu einem einzelnen Mikrofon erzielen
- Dies wird erreicht durch:
 - \rightarrow Ausnützen der räumlichen Information (Richtungsselektivität)

 \rightarrow Schätzung der statistischen Zusammenhänge zwischen den Mikrofonsignalen (Korrelation)

Veröffentlichungen

- Simon Grimm, Jürgen Freudenberger, and Harald Schnepp. Microphone diversity based wind noise reduction in a car environment using MEMS arrays. In Jahrestagung für Akustik (DAGA), Kiel, pages 1473-1476, Feb. 2017.
- Simon Grimm and Jürgen Freudenberger. Background noise simulation in cars based on multiple input - multiple output equalization. In Jahrestagung für Akustik (DAGA), Kiel, pages 299-302, Feb. 2017.
- Simon Grimm, Toby Christian Lawin-Ore, Simon Doclo, and Jürgen Freudenberger. Phase reference for the generalized multichannel Wiener filter. EURASIP Journal on Advances in Signal Processing, pages 1-10, 2016