H T W G

Hochschule Konstanz University of Applied Sciences

Reduction of Losses and Value Addition of Agricultural Products Through Advanced Drying Processes

Kuma G. Erko and Katrin Jödicke

with contributions from Saskia Arendt and Dr. Addisalem H. Taye

Recap

Recap: Post-Harvest Handling

Recap: Post-Harvest Losses

Recap: Mal- and Undernourishment

- 800 million people are undernourished
 (12% of the world's total population)
- UN's millennium goal 1:
 - Reduce hunger by 50% in 2015
 - Remains unreached

Recap: Mal- and Undernourishment

Recap: Mal- and Undernourishment

- By 2050 population exceeds 9 billion
- To reduce hunger to zero food production would have to increase by 70%

...or...

Recap: Post-Harvest Losses

Recap: Post-Harvest Losses Reduction

Recap: Post-Harvest Losses Value Addition

Recap: Post-Harvest Losses Reduction and Value Addition

Recap: Post-Harvest Losses Reduction and Value Addition

Alarming Serious Moderate Low Insufficient data, significant concern Insufficient data Not calculated	
Serious Moderate Low Insufficient data, significant concern Insufficient data Not calculated	
Moderate Low Insufficient data, significant concern Insufficient data Not calculated	
Low Insufficient data, significant concern Insufficient data Not calculated	
Insufficient data, significant concern Insufficient data Not calculated	
Insufficient data Not calculated	
Not calculated	
	fe
	erhil
	nnge
	elthi
	≥.
	017

Recap: Post-Harvest Losses Reduction and Value Addition

- Reduce water in the
 - product
- Minimize activity of
 - microorganisms
- Get stable and long lasting products
- Achieve high quality dried products

Optical

Mechanical

Nutritional

Energy efficiency

New measuring techniques

Concept of glass transition temperature

21

Small-Scale Drying of Agricultural Products using Constant & Continuous Strategies

Small-Scale Drying of Agricultural Products using Constant & Continuous Strategies

Sub-contents:

- Methods and Materials
- Results
- Summary

Methods and Material used:

Parameters	Products				
	Potato (Balena)	Carrot			
Air temperature	50°C-90°C	40°C-75°C			
(<i>T_a</i>)					
	60°C-80°C	40°C-75°C			
Air velocity (<i>v_a</i>)	0.85m/s-1.25m/s	0.95m/s-1.25m/s			
Relative humidity	10%-50%	10%-20%			
(<i>Rh</i>)					

Methods and Fresh Material used: Constant Drying

Methods and Fresh Material used: Continous Drying

Dryer used: small-scale air-recirculating cabinet dryer

- a = radial fan
- b = heater
- d = CCD camera
- e = pyrometer
- f = temp. & Hum.
- j = steam gen.
- I = system contr.
- m = computer

Image Capturing and Analyzing : color change CIELab 1976

$$\Delta L^* = L^* - L_0$$

$$\Delta a^* = a^* - a_0$$

$$\Delta b^* = b^* - b_0$$

$$\Delta E = \sqrt{(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2}$$

Surface area shrinkage :

- Pixels of the particle surface were counted

$$\boldsymbol{S} = \left(\boldsymbol{1} - \frac{\boldsymbol{A}}{\boldsymbol{A}_{\boldsymbol{O}}} \right) \times 100 \%$$

- S = Shrinkage (%)
- **A** = Area at time t
- $-A_0$ = Initial area

Drying kinetics: Moisture removal

- Moisture removal was continuously recorded
- Weight deviated was corrected
- Initial and end mass was measured using standard balance

$$MR = \frac{M - M_e}{M_0 - M_e} = \frac{M}{M_0}$$

Drying Kinetics: potato at $T_a = 70^{\circ}$ C and Rh = 30%

40

Delta E (-)

Color change optimized: total color change of potato

Delta E (-)

Color change optimized: total color change of carrot

Techniques used for further optimization:

43

44

45

Results and discussion

Color change optimized: cont. drying techniques

Surface area shrinkage: potato

Surface area shrinkage: carrot

Result summary:

Product	Air temperature (°C)	Air velocity (m/s)	Relative humidity (%)	Drying time (min)	ΔΕ	S (%)
Potato	67.46	1.25	10	124	6.92	35.5
Carrot	49	0.95	20	250	7.32	77.45
Potato	65-70-65	1.1	40-40-20	120	4.9	-
Carrot	75-65-55	1.1	40-40-20	190	9.3	-

What achieved by using constant and continuous drying strategies is:

- Better processing techniques has been developed
- Optimum drying parameters (fruits and vegetables)
- Value addition (retention of high quality)

H T W G

Hochschule Konstanz University of Applied Sciences

Thank you for your attention!

.