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DISPLACEMENT SOLUTIONS FOR DYNAMIC LOADS IN
TRANSVERSELY-ISOTROPIC STRATIFIED MEDIA

G. WAAS, H. R. RIGGS AND H. WERKLE
Hochtief AG, Abt. KTI, Bockenheimer Landstr. 24, 6000 Frankfurt/Main I, West Gerrhany ’

SUMMARY

Solutions for the displacements caused by dynamic loads in a viscoelastic transversely-isotropic medium are derived. The
medium extends horizontally to infinity, but is bounded below by a rigid base. Stratification of the medium presents no
difficulties. The medium is discretized in the vertical direction only; discretization in the horizontal direction is obviated by
use of analytical solutions to the equations of motion. , ) :

Application of the displacement solutions to soil-structure interaction is illustrated. A soil flexibility matrix (and hencg, a
tiffness matrix) for a surface foundation follows directly from the displacement solutions. A simple'modification to obtain
the soil stiffness for an embedded foundation of arbitrary geometry is desc;rjﬁ'ed. Stiffnesses of rigid surfage and €mbedded
foundations are computed and compared. with previously published results. In addition, the dynamic stiffness of a rigid
surface foundation on a soil layer with linearly increasing shear modulus is compared to that for a homogeneous soil layer.
A reduction in radiation damping is found to result from the inhomogeneity.

INTRODUCTION

Solutions for the displacements caused by static and dynamic loads acting in a layered medium have many
applications in geomechanics and seismology. Of particular interest here are applications in the area of
soil-structure interaction. Specifically, such solutions can be used to compute the stiffness of the soil
foundation. This stiffness then can be used in conjunction with the structure stiffness in the determination of
structural response to loads on the structure and to incoming seismic waves. Seismic waves may be of either
natural (earthquake) or man-made (e.g. explosions) origins, and can themselves be determined by use of the
displacement solutions.

Much previous work in this area has involved surface foundations on a homogeneous half-space, e.g.
References 1and 2, and has required the numerical solution of integral equations for the mixed boundary value
problem. This approach has also been extended to a stratified half-space.® For embedded foundations, series
solutions have been developed for the special case of hemispherical embedment.* * Procedures applicable to

rbitrary foundation geometries are reported in References 6-8.

- Inthe following, expressions for the steady-state displacements caused by static and dynamic loads in oron a
viscoelastic medium of finite depth are derived. The expressions involve no numerical integrations. In addition,
no difficulties are presented by non-homogeneities; the effort required for a stratified medium is the same as
that for a homogeneous medium. Although Waas® 1° has published the displacement solutions for an isotropic
material, the derivation has yet to appear in a widely available source.!! It therefore seems useful to present the
derivation in some detail. In addition, the solutions are generalized here for a transversely-isotropic material. A
cylindrical coordinate system is used in the derivation, and the variation in the tangential direction is
represented by a Fourier expansion. The solutions are valid for all Fourier terms. Tajimi'? and Kausel'3 14
have derived in a different manner similar solutions for an isotropic medium. Whereas Tajimi considered only
point loads, Kausel also obtained solutions for the more general case of ring loads, but only for Fourier terms 0
and 1.

Applications of the displacement solutions in the area of soil-structure interaction are illustrated. A
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straightforward procedure is presented which extends the applicability of the solutions to the case of
embedded foundations. Results are compared with previously published data.

MEDIUM

The medium consists of layers which extend horizontally to infinity. The top surface is stress-free, except for
possible applied tractions. The bottom layer is bonded to a rigid base. The medium has viscoelastic
transversely-isotropic material properties; i.e. the material is isotropic only in the horizontal plane. The
material properties may vary with depth.

Ring loads of the form p(w) = p cosnf- ! or p sin nf - ¢!, where @ is the circular frequency, may act in the
radial, tangential or vertical directions. The medium and one possible load configuration are illustrated in
Figure 1.

The displacement solutions for ring loads of the above form will be expressed in terms of solutions to an
associated eigenvalue problem. The eigenvalue problem for the isotropic medium has been considered
previously.!S17 However, because the eigenvalue solution is fundamental to the displacement solution, it will
be discussed in detail here.

EIGENVALUE PROBLEM

Formulation
A general displacement field in the medium can be expanded in a Fourier series (omitting, for the present, the

factor e'):
) © Us cosnf U2 sinnd
u= ) W3 cosnd »+< Wasinnb 1)
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Figure 1. Horizontally infinite medium with cylindrical coordinate system and ring load
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in which U,, W, and V, are functions of r and z and represent the radial, vertical and tangential displacements,
respectively. The superscripts s’ and ‘a’ refer to symmetry and antisymmetry, respectively, about § = 0. With
such an expansion all relevant equations become uncoupled not only with respect to n, but also with respect to
‘s’and ‘a’. Hence, it is necessary only to consider an arbitrary term n. Unless specifically indicated otherwise, the
displacements, loads, strains and stresses will be represented here by their Fourier coefficients; for example

u= (U, W, V>N
The strains and stresses consistent with the displacements u can be written,* respectively, as
€= Au )
and o =De¢ (3)

D is the soil constitutive matrix with five independent parameters for a transversely-isotropic material.
Hysteretic damping may be included by using complex-valued parameters.
The homogeneous boundary value problem for motion in the medium can be written for frequency w as

L,6+po?u=0 (4a)

g, =0atz=0 (4b)

u=0atz=h, 4c)

where p is the mass density, and 6, = — (,,, 7,,, 75, YT is the vector of stresses on the surface z = 0. With the
use of equations (2) and (3), equation (4a) can be written in terms of displacements:

(L, DA+ pw*I;)u=10 (5)

in which I is the 3 x 3 identity matrix.
Solutions to equation (5) may be written in the form,!7-1°

u= (@VHY + L 2PH?*)f, (6)

in which H" and H® are matrices of Hankel functions of the first and second kind, respectively (see
Appendix I). The functions are dependent on kr, where k is the yet unknown wave number. f, is a vector of
exponential functions dependent on k and z. ™ and «/® are participation factors.

The above analytical solution is too complex for the present purpose because the wave number k appears in
the exponential functions of f, . It is apparent from the solution, however, that equation (5) represents a system
of separable differential equations. Therefore, a solution of similar form is assumed here:

u=Hf ™)

a which H = a"H®Y + «®H® and f is a vector of unknown functions dependent on z. If equation (7) is
substituted into equation (5) and the indicated operations are carried out, the following expression results:

—H(L - po®1)f =0 (8)
As this must be satisfied for every value of r,
(L—po*I;)f=0 (9a)
Analogously, with equations (2), (3) and (7) the boundary conditions can be written as
Lf=0atz=0 (9b)
f=0atz=nh, (9c)

From L and L, (see Appendix I)itis apparent that the three coupled partial differential equations have been
reduced to two coupled and one uncoupled ordinary differential equations which are independent of r and n.

* See Appendix I for all vectors and matrices not defined in the text.
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Equations (9) represent an eigenvalue problem with k as the eigenvalue. As mentioned previously, the
analytical solution is too complex for the present purpose. The finite element method will be used to obtain an
approximate solution.

The domain is discretized into finite elements. (Note that the medium is discretized only in the vertical
direction, and that the elements can be envisioned as infinitely long layers: see Figure 1.) The value of f within
an element is assumed to be related to the values at the element nodes through interpolation functions. Hence,
for the entire medium

f=Nu, (10)

where N is the matrix of interpolation functions and ul = (x", z", yT > is the vector of radial, vertical and
tangential nodal ‘displacements’, respectively.
The FEM approximation to equations (9) can be written as

h, h, h,
{J NTLlNdz——f pszTNdz—J —(—l—NT)Lszz}'uezﬁ (In
0 0 o \dz

Equation (11) is most easily derived by a method of weighted residuals (Galerkin method), with a subsequent .
integration by parts to reduce the order of the equation. If the eigenvalue k in equation (11) is factored out and
it is recognized that y is uncoupled from x and z, then equation (11) can be written as

(AgkZ +Bgky + Ca)xg = 0 (12a)
(ALk2+Cy=10 (12b)

in which x} = (xT, z" ). Equations (12a) and (12b) are the algebraic eigenvalue equations for generalized
Rayleigh and Love waves, respectively, with the wave numbers kg and k; as the eigenvalues. Equations (11)and
(12) are general, as no assumptions have been made concerning the interpolation functions (except that fis C'?
continuous) or the variation with depth of the material properties. If such assumptions are made, the integrals
in equation (11) [or the integrals implicit in equations (12)] can be evaluated. It will be assumed here that f
varies linearly within an element. Furthermore, it will be assumed that the material properties are constant
within an element, but that they may vary from element to element. The matrices in equations (12) for this case
are given in Appendix I in terms of the corresponding element matrices. The global matrices are formed from
the element matrices using standard finite element assembly procedures.

Solution

Waas!® has discussed the solutions to the above equations in detail. Only a brief discussion is necessary here.
Equations (12a) and (12b) represent 2m and m equations, respectively, where m is the total number of layers..
There are, however, 6m solutions. (If k is one eigenvalue, then —k is also an eigenvalue.) When the
eigensolutions are combined with the two Hankel functions, 12m wave patterns result. However, as there are
only 6m linearly independent patterns it is assumed here that only those 3m eigenvalues with negative
imaginary parts are used. In case of real eigenvalues the direction of energy flow has to be observed in choosing
the eigenvalues.'®

Certain orthogonality relations of the eigenvectors will be employed to solve for the displacements caused by
ring loads. The orthogonality relations for Love waves, with the indicated normalization of the eigenvectors,
are easily shown to be

YTA Y =K[? (13a)

YTC, Y= -1 (13b)

where Y is the matrix of the y eigenvectors and K, is the diagonal matrix of Love wave numbers.
The orthogonality relations for Rayleigh waves can be written for solutions i and j as!®

0 i#j

2 i=j (4

T T -
kg;xg; Ag Xp;Kg; — Xg; CaXg; = {
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With the property that kg, xg; = <{x{,zf) and —ky;, ( —xf,z]) are both solutions, the orthogonality
relations can be written for all eigenvectors as

Ky ZTA,ZKy —XTC,X = I (15a)
K XTA XKy —Z7C,Z = I (15b)

in which K is the diagonal matrix of Rayleigh wave numbers, and X and Z are the m x 2m matrices with
columns i equal to x; and z;, respectively. For further orthogonality relations see Reference 14.

DISPLACEMENTS CAUSED BY RING LOADS

The displacements in the medium caused by dynamic ring loads applied at the layer boundaries along the
interface r = r are now sought. For this purpose it is necessary to consider two regions: region I is defined by
r < ry, and region II is defined by r > r, (Figure 2). The displacements will be expanded in terms of the
solutions of the homogeneous problem; i.e. in the form of equation (7):

2Zm m
%= L B+ U i+ 3 (o) B+ B ), 19
where w, are the displacements along the layer boundaries. The matrices are defined in Appendix L
For the 3m eigenvalues which were chosen, the Hankel functions of the first kind represent waves which
propagate from infinity towards the origin, whereas the reverse is true for Hankel functions of the second kind.
In region II, waves of the first type are a physical impossibility; hence a{"’ = 0. The layer displacements in
region II are therefore

2Zm m

n_ 2 @ 2 2

up = ), HE xgp; 0 + > HPy;o? (17a)
. et

ji=1

Henceforth, the superscript ‘(2) will be dropped for convenience.

2
Region I pp P pp Region II

Layer 1

Layer m
vz z 4
| rerg »  r=rp | rErg =

Figure 2. Subdivision of medium into region I and region II, with p,, p;, and py at layer [
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In region I, both waves propagating to and from the origin are possible. However, from continuity
requirements at the origin it follows that a{V = «!®. With the identity H{" (kr)+ H P (kr) = J,,(kr), the
displacements are

2Zm n

up= ), Jg;Xg;Br;+ x JuyiBy (17b)
i=1

ji=1
where f§ has been used for the participation factors in region I. Jg;and J, ; are similar to Hg;and Hy;, but with
the Hankel functions replaced by Bessel functions.

The 4m factors oy, Br; and 2m factors oy, By are as yet unknown. The 6m equations necessary to determine
the participation factors are provided by displacement continuity and force equilibrium along the interface
r = ry. Displacement continuity gives

up(r = ro) =u{ (r =ry) (18a)

or, subtracting equation (17b) from equation (17a):

2Zm

Z (HRﬂRj—JRjﬂR]‘)ij‘*’ Z (HLjaLj—JLjﬂLj)yj =0 (18b)
1 i=1

j=
in which the Hankel and Bessel functions are evaluated at r = ry.
The following substitution of variables significantly simplifies equation (18b):

ag; = J,a;+ J5c; (19a)
Brj=HPa;+ HP ¢; (19b)
o =J,b;+J0d; (19¢)
By=H®Pb;+HPd; (19d)

where the functions are evaluated at ky;-ro for ag;, f; and at ky;-ro for ayy, By, and () = d()/dr. With the
relation H?J, — H*"J = 2i/ar,, equation (18b) then becomes

2m m
y —xjaj+§ Y y;d;=0 or —Xa+;Yd= 0 (20a)
j=1 ji=1
2Zm
2 kejc;z; =0 or ZKze =0 (20b)
iT1
n 2m m n
- Y X+ Y —byy/=0 or ;Xc——Yb: 0 (20c)
i=1 i=1

The final 3m constraint equations necessary to determine the displacements are obtained from the
requirement of force equilibrium along the interface at r = ry:

P =P~ Pn 21

The ‘nodal’ forces p,T = {pJ, pJ, p4 D are the externally applied ring loads of the form pe“ and with either a
sine or cosine expansion in the 8 direction. The nodal forces p, and p; are the consistent nodal loads that are in
equilibrium, in an energy sense, with the surface stress distribution along the interface r = ry.

The relation between the stresses and the nodal forces can be obtained by the principle of virtual
displacements. For layer / this can be written as

p'= f N,"T7gdz = f N,"T"DAudz (22)
hy hy

Tisatransformation matrix such that T7g is the vector of surface stresses {g,,, T,;, 7,0 » . The displacements in
equation (22) can be expressed in terms of the layer boundary displacements with equations (17), and the
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interpolation matrix N;. If the integrations along the two surfaces are performed for all layers, and the resulting
expressions are simplified by the use of equations (19) and (20), the following equations are obtained:

r,

2—10 p, = A XKZc (23a)
r,

i P = A ZKqa (23b)
r

2—i°p9 = A, YKZd (23c)

Equations (20) and (23) represent 6m equations in 6m unknowns. An explicit solution for the unknowns is
possible with use of the orthogonality conditions. For example, the solution for d is apparent from equations
(23c) and (13a). The following relations result:

a= —i%(KRZTpZ—FriXTpG) (24a)
0
. T
b= ~1—2-nY P, (24b)
¢= —i%XTp, (24c)
d= —-i?YTpg (24d)

The displacements along the layer boundaries for ring loads at r = ry and for any Fourier term n is thus given
by equations (17), (19)and (24). For ring loads at r = r, the radial, vertical and tangential displacements of the
layer boundaries at r = R > r, are:

nf = n M o_ cosnf\ .

u= —1E<j§1 HjxjaRj+Ej§1 ijjoch> <sin 16 >'e‘“" (25a)
i cosnf\ .

W= —15<j=1kRjszjaRj> <sinn0 >~e‘f‘" (25b)
nfn i o —sinnf \ . 25

Ve _15 Ejgl HijaRj+j§1 HijOij cos nf © (25¢)

where H;= H® (kg;R), H;= H{ (kyR), and the common term —in/2 has been factored out of the
participation factors.
The participation factors for various load conditions are as follows:

_ cos nf
P="n sin né

— ’
ag; = roJ i Xy;p,

Radial ring load layer |,

_ (26a)
&y = nd;Yy;p,
Vertical ring load at layer /,
cos nf
p=r.\ .
sin nf
ag; = roJ jky;Z;;p; (26b)

a ;=0
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_ —sinnf
P=Pe cos nf

ag; = nJ;X,;py

Tangential ring load at layer I,

- (26¢)
0y = roJ Y15 Po

where J; = J, (kg; 7o), jj = J, (kyro), and X; is the (], j) element of X, etc. If R < ry, then Bessel functions
instead of Hankel functions must be used in equations (25), and Hankel instead of Bessel functions must be
used in equations (26). (The Hankel functions must always be evaluated at the larger of R and r,.)
For an isotropic medium the above solutions can be shown to be equivalent to those given in Reference 13.
The solutions for ring loads can be used to determine the displacements caused by point, line and disk loads.
These solutions are given in Appendix II.

APPLICATIONS

Soil stiffness matrix

One application of the above solutions is in soil-structure interaction analyses of axisymmetric structures.
With the displacement solutions, a frequency-dependent flexibility matrix which relates forces and
displacements at a number of rings in the soil can be easily constructed. The dynamic stiffness matrix, K, (@), is
obtained by inversion. K, (w) may be added to the structure dynamic stiffness matrix at the corresponding
foundation degrees-of-freedom to obtain the global stiffness matrix, which can be used for dynamic analyses in
the frequency domain. Frequently only the Fourier terms n = 0 (vertical and torsional motion) and n = 1
(horizontal and rocking motion) are necessary. ’

In the theory presented the soil medium is discretized in the vertical direction by several thin layers, or
sublayers. It is also discretized in the horizontal direction, insofar as the soil and foundation are connected at a
finite number of rings. Directly underneath the foundation, the vertical discretization must be able to represent
the local soil-foundation interaction effects, and relatively thin layer thicknesses are required. At a larger
depth, in order that elastic waves are adequately represented by the assumed displacement functions, the layer
thickness is limited to approximately 1/6 the length of a shear wave. A study has indicated that for an isotropic
medium (Poisson’s ratio v = 1/3), the best horizontal discretization is obtained when the nodal ring spacing
equals the layer thickness directly underneath the foundation.

For rigid foundations, frequency-dependent ‘foundation’ stiffnesses (soil springs) can be easily computed
from the soil flexibility or stiffness matrices. In this section, stiffnesses of rigid surface and embedded
foundations are compared with previously published results in order to verify the validity of the displacement
solutions. In addition, results for a rigid surface foundation on a soil with a linearly increasing shear modulus
are presented.

Surface foundations

The frequency-dependent stiffnesses of rigid circular surface foundations on a homogeneous viscoelastic
half-space have been computed previously.? In addition, approximate formulae for the static stiffnesses of rigid
foundations on a homogeneous, elastic layer with a rigid base have been developed based on finite element
parameter studies.?% 21

With the displacement solutions from above, the dynamic stiffnesses of a rigid circular foundation on a deep
soil layer (h,/a = 10, a = foundation radius) have been computed. The shear modulus was assumed to increase
linearly with depth:

G@) = Go<l+v-§>

Three cases, y = 0, 1 and 2, were studied using v = 1/3 and a material damping ratio D = 0-05. The soil layer
was modelled with 40 sublayers of varying thicknesses: 8 x 0-1a,4 x 0-15a,4 x 0-2a, 4 x 0-25a and 20 x 0-34a.
The foundation and soil were coupled at 10 equally spaced nodal rings.
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The dynamic stiffnesses can be written in terms of static stiffnesses K¢, and frequency-dependent non-
dimensional stiffness coefficients, k; and ¢;; (or k; and ¢,,):

Ky = K3 (ky +iagcy)
or X
K = K§;- (1+12D)- (k;; +iag¢y;)

where ay, = w" a/c, is the non-dimensional frequency and ¢, = ./(G,/p) is the shear wave velocity. The static
stiffnesses computed here, together with the values for a half-space and the values from the above-mentioned
formulae for an elastic layer, are given in Table I. The results for the homogeneous layer (y = 0)agree well with
the other results. The results for y = 1 and 2 indicate that the stiffnesses increase significantly for a variable
shear modulus. The largest increase is in the vertical stiffness.

The non-dimensional stiffness coefficients are plotted in Figure 3. The available values for the homogeneous
half-space? are also plotted. (The results for torsion were not given in Reference 3.) Agreement between the
layer (h,/a = 10) and the half-space is good. However, the horizontal and vertical stiffness coefficients for the
layer show some waviness, which is caused by wave reflections at the rigid base. A linear variation of the shear
modulus affects the coefficients k;; only slightly. However, the coefficients ¢;; and thus the equivalent viscous
damping ratio D = 0-5ayc;;/k;; are significantly affected by the variation of the shear modulus with depth.
(Note that a, is based on the modulus at the soil surface.)

The static stiffnesses of a rigid foundation on a transversely-isotropic elastic soil layer were computed and
compared with the results of Kirkner?? for a half-space. A deep layer (h,/a = 20) was discretized into 34
sublayers: 9 x 0-1a, 4 x 0-154a, 4 x 0-2254a, 4 x 0:3754a, 4 x 0-65a and 9 x 1-54. The material properties were:
D,, =4G,;,D,, = 0732G,,, D,, = 2G,, and G,5 = 2:5G,,. The foundation and soil were coupled at 10 equally
spaced nodal rings at which the relaxed boundary conditions of Kirkner were imposed. The results are
compared in Table II and can be seen to be in good agreement. A mesh refinement resulted in a change in
stiffness of approximately 1 per cent in each of the three cases.

Embedded foundations

The complex frequency-dependent stiffness matrix K,,(w) relates forces and displacements at nodal rings in
and on a horizontally layered medium, Figure 4(a). If there is an excavation, K, (w) includes the inertia,
damping and elastic forces of the excavated soil. Hence, the stiffness must be modified to account for the
excavation.

If the excavated soil is modelled with solid finite elements with the appropriate Fourier expansion in the
circumferential direction, Figure 4(b), the excavation mass matrix M and complex stiffness matrix K can be
easily computed. The following relationship then may be written for the excavation:

[K —w?M] = F(ji:_‘f’_z My | Ko Mi@__] {“} - {0} 27)
Kyi—’My; | Kpp— @’ My, | |u, fy
in which u is the displacement vector, f, is the vector of unknown boundary interaction forces between the soil

and the excavation, and the subscripts ‘" and ‘b’ refer to the internal and boundary degrees of freedom,

Table 1. Static stiffnesses of a rigid circular foundation on the surface of a half-space and a layer

forv=1/3
Stiffness component Half-space? Layer, h,/a = 10
Approximation?®- 2! Present method
y=20 y=0 y=1 y=2
Horizontal K}/(G, - a) 4-80 504 509 7.62 935
Rocking K$3/(Go-a?) 4-00 407 402 561 6-82
Vertical K{y/(Gg " a) 6-00 677 660 1283 1703

Torsion Ki7/(G,- a%) 533 533 533 640 728
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Figure 3(a). Non-dimensional stiffness coefficients k;;, ¢; vs. frequency aq; v = 1/3, D = 0:05, layer h /a = 10. Horizontal stiffness
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Figure 3(b). Non-dimensional stiffness coefficients k;;, ¢; vs. frequency ao; v = 1/3, D = 0-05, layer h/a = 10. Rocking stiffness
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Table II. Static stiffnesses for rigid circular foundation on transversely-
isotropic elastic soil

Horizontal Rocking Vertical

K%H/(Gr: ) a) K;{R/(Gr: : a3) i/V/(Grz ! a)
Layer h/a = 20 649 293 4-50
Half-space?? 625 292 437

internal ¢

nodes a

—F-—r
o

boundary
nodes

(@) (b (©

Figure 4. Stiffness modification for an excavation: (a) horizontally layered medium; (b) excavation modelled with finite elements;
(c) medium with excavation

respectively. The internal degrees-of-freedom can be condensed out of equation (27), resulting in the boundary
stiffness matrix K, (w). The dynamic stiffness matrix K, (@) of the soil with an excavation then can be obtained
as

Kg (Cl)) = Km (Cl)) - I(b (Cl))

The procedure is illustrated in Figure 4. For purely elastic media, numerical difficulties arise when @ is
sufficiently close to the natural frequencies of the excavation.®

The above procedure has been used to compute the horizontal and rocking stiffnesses of an embedded rigid
foundation for the case h,/a = 3, E/a = 1,v = 1/3 and D = 0-05. For the homogeneous soil layer, 24 sublayers
of equal height were used. The excavation was modelled with 64 solid elements of equal size. The static
stiffnesses for this case are K3,/(G,-a)= 138 and K23/(G,-a’) = 16:3, which agree well with the
corresponding values of 13-2 and 15-6 obtained from the approximate formulae developed in Reference 21.
The dynamic stiffness coefficients are presented in Figure 5, together with the results of Elsabee and Morray.?!
The latter used a transmitting boundary for the soil away from the foundation, and finite elements for the soil
under the foundation. The good agreement between the results illustrates the effectiveness of the above-
described modification for excavations.

CONCLUSIONS

Displacement solutions for loads in a layered viscoelastic medium have been derived. The solutions provide a
versatile method of computing soil stiffness matrices for use in soil-structure interaction problems.
Stratification of the medium causes neither difficulty nor additional effort. With a straightforward numerical
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Ref. 21

Present Method

4 )

10-¢
-
= -
; o ° o ° ) L Krr
o =z
N T 054 = ~
g O By T === Crp
o
T o /
¥
P i
0 T T T = 0 e T T T T
TI/L T2 3TTIL v TTid T2 37T m
do [eT6}

Figure 5. Non-dimensional stiffness coefficients ky;, &; vs. frequency a, for an embedded foundation;v = 1/3,D = 0-05,h,/a = 3,Efa = 1

modification procedure, embedded foundations of arbitrary geometry can be modelled with good accuracy.
The assumption of a rigid base underneath the medium means that the solutions are most applicable to soil
layers underlain by a much stiffer soil or bedrock. However, the solutions also can be used for viscoelastic half-
spaces if the soil is modelled to a large enough depth.

Agreement between the present results and previously published data is good. The impedance functions for a
rigid foundation on a soil with a shear modulus which increases linearly with depth have been presented. The
results have shown that the variation of the modulus significantly affects the damping coefficient of the
foundation.

The displacement solutions presented herein have a wide range of applicability. An application in
soil-structure interaction with axisymmetric rigid foundations has been illustrated here. Flexibility of the
foundation also can be considered.?® The solutions for point loads have been applied to non-axisymmetric
foundations and structure—soil-structure interaction problems,?* and to pile foundations.!® The method also
has been used to solve wave propagation and kinematic interaction problems.?3- 26

APPENDIX I—VECTORS AND MATRICES
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For an isotropic material, D,, = D_, = A+ 2G; D,, = D,,
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where hy =z, —Z; Ny =2, —2z N, =z —7%

Rayleigh wave layer matrices (material constants are for layer /):
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APPENDIX II—ADDITIONAL SOLUTIONS

Point loads

The participation factors for unit point loads acting in or on a layered medium follow simply as the limiting
value of the participation factors for ring loads, equations (26), if the magnitude of the load is held constant
while the diameter of the ring is allowed to approach zero (r, — 0). The resulting factors, whichare to be used in
conjunction with equations (25) to obtain displacements, are as follows:

Vertical point load (n = 0) at layer [

1
%) = 5 fwlu (A1)
= 0
Horizontal point load (n = 1) at layer [:
1
Opj = z—nkkj Xy
1 A2
(XL]- = EijYlj ( )

The solutions for point loads are useful for problems which require a full three-dimensional treatment. For
example, a 3-D stiffness matrix of the soil can be easily computed and used in soil-structure interaction
problems involving non-axisymmetric structures. Another application would be the study of wave
propagation.

Line loads

The two-dimensional (plane strain) solutions for line loads can be obtained from the solutions for ring loads
as the limiting case as ry, R — co. In this case the Hankel and Bessel functions can be replaced with their
asymptotic expansions in terms of exponential functions. The displacements at a distance x > O away from the
line loads are as follows:

1 2m ) .
u=—3 Y kX og; e Rx gt (A3a)
j=1
—i 2Zm . .
W= L0l € TR g
5 Z kR_] %R, ikgx . alot (A3b)

i=1
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: 2m
-1 . .
V= _2_ .21 ijyj o e —ikyx . giot
Fpu
The participation factors for the various line loads (n = 0) at layer [ are: -
Vertical line load, p,:

og; = Z;p.

;=
Horizontal line load, p,:

og; = 1X,;p,

=
Horizontal shearing line load, p,:

ag; = 0

0y, Y,ipe

visk loads
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(A3c)

(A4)

(A5)

(A6)

Displacements caused by disk loads (distributed loads over a circular area) can be obtained by integrating
the participation factors for ring loads along the radius of the loaded area. The layer boundary displacements

at r = R for four types of disk loading with radius r, are as follows.
Vertical disk load (n = 0) at layer /, constant load p = p,:

{ roH® (k;R)J, (kRjro)}_ gior K270
R
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U= —— b SVAN
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v=20
Torsional disk load (n = 0) at layer [, p = pg-rL (linear variation):
0
u=20
w=0

in ™
V= +? Z YjYIjPB'

j=1
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2R
rodo (ijR)H(zz) (ij"o) i
0

Horizontal disk load (n = 1) at layer /, constant load p = p, = p, with p,-cos# and — p,-sin6:

in im roH® (kg,R)J, (kgTo)
u= -2 {Z x; Xy;p- { o1y (Kp;R)J (RpjTo ,
=t rod (kRjR)H(f)(kRj"o)"‘E

{roH(IZ)(kL.iR)Jl(ijrO)}:].cosg.eiwt R=r,
R <

1 m
- Y.p-
YR A Lol (o R ey o)

i=1

R<r

Z=Tr,

R<rg

=1,

(A7a)
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in 2" roH® (kg;R)J (kg ;7o) . R=r
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o= L F e [ b ) |
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' roJ (ky RYHY (ijro)‘*'i“E R<r
Rocking disk load (n = 1) at layer I, p = p,-r/ro cos6:
in 7 HY (kR kg, . R =
u= —l—; Z X; Zy;p, roH” (kajR) T2 (kjro) 5 cos §- el fo (A10a)
ro ' RV HE ayro) +- R<rg
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j=1 0
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Again, the prime indicates differentiation with respect to r. The expressions for the two regions R > rg and

R

< ro can be shown to be identical at R = ry. The above solutions can be shown to be identical to Kausel’s

solutions*® for the case of an isotropic medium.
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