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A TRANSMITTING BOUNDARY FOR THE DYNAMIC FINITE
ELEMENT ANALYSIS OF CROSS ANISOTROPIC SOILS
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SUMMARY

The problem of the transmitting boundary used in the dynamic finite element analysis of layered axisymmetric soil models
with non-axisymmetric displacements is considered. Fach layer is modelled as a homogeneous, viscoelastic cross
anisotropic medium with a vertical axis of material symmetry.

INTRODUCTION

Some types of soil and rocks exhibit in their response to stresses a significant degree of material anisotropy. Itis
a manifestation of their anisotropic fabric and structure acquired during the geological formation process. The
'mechanical anisotropy is often described as cross anisotropy or transversely isotropy, which indicates the
existence of a vertical axis of symmetry and horizontal planes of isotropy.

The dynamic response of a rigid strip foundation on a layered cross anisotropic medium and on a cross
anisotropic halfspace have been studied by Gazetas.':? He applied an analytical solution, which is based on a
Fourier transformation in the horizontal direction. An analytical solution for the vertical, horizontal and
rocking motion of a rigid circular plate on a cross anisotropic elastic halfspace has been given by Kirkner.?
Both solutions are restricted to materials which fulfill a constraint relationship of the elastic parameters,
proposed by Carrier.* This relationship reduces the number of elastic parameters from five to four and
uncouples the equations of motion. The torsional vibration of a rigid circular plate on a cross anisotropic
elastic halfspace has been studied by Constantinou and Gazetas.’

Recently, a semi-analytical method for foundations with circular or arbitrary shape on a layered viscoelastic
cross anisotropic soil has been presented.® The derivation is similar to those of the transmitting boundaries of
Waas’ and Kausel,® which are used in the finite element analysis of plane and axisymmetric soil models. In the
following, the stiffness matrix of the transmitting boundary for axisymmetric soil models, given originally for
isotropic media,® ®is extended to cross anisotropic media. The solution is based on the derivation in Reference
8. It does not require a restriction of the elastic parameters. The derivation is given in the frequency domain.

DYNAMIC STIFFNESS MATRIX

A general displacement field in the transmitting element can be expanded in a Fourier series as

u = 3, (@7 u+®uy) )
. n=0
with
u, u, ug
u, =4 W, u, =< w, unl=qwd (1a)
v, v, v}
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®; = [cosng, cosnp, —sinng] (1b)
@2 = [sinng, sinng, cosng] (1c)

in which u_, w_and v are the radial, vertical and tangential displacements, respectively. The superscripts ‘s’ and
‘@’ refer to symmetry and antisymmetry, respectively, about ¢ = 0, Figure 1. With this expansion all pertinent
equations become uncoupled with respect to n and to ‘a’and ‘s’. Hence, only ‘s’-terms for an arbitrary n will be
considered without loss of generality.

The displacements u, depend on the radial coordinate r and the vertical coordinate z. They can be written as
u, = H(r)- 1(z) @)

where the matrix H(r) is that part of the splution of the pertinent equations of motion, which depends upon r,

whereas the functions f(z) = { £,(2), f.(2), fq,(z)}T are approximated by piecewise linear or quadratic shape
functions.

To obtain H(r), the equations of motion are considered. In the transversely isotropic continuum they can be
written for an arbitrary Fourier coefficient as

oA A ‘ 3
Drr'—l‘*‘(Dr=+2'Grz)'0—2+(D,,—~D,(p)'sz+2-G,z-—ﬁfﬂ+p§).2-u,f= 0
r

or r 0z
A, oA, 20(r-w,) n-w, 5
Dzz__+(Drz+2Grz)——' r:‘_W“ZIGrz‘ +pQ W:ZO (3)
0z 0z roor r
A A 0w, d
Drr.u+(Drz+2.Gr:)'n 2+(Drr_Dr()‘&—'2'Grz' wr+pQZ'U:=O
r r P or 0z
with
s a 5 s
Ay =tny Tyt (3a)
r or r
A, = (3b)
2T oz
tfn . Ov,
= =1 = e n 3
Or 2<r n 52) (3¢)
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Do = :7:(62 or > (3d)
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Figure 1. Transmitting element
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1o,  (\ 1
a)z—-2—< o —n u,,> " (3e)

Herein Q denotes the circular frequency of vibration and D,,, D,., D, D,,, G,  are the five material constants of
the transversely isotropic continuum, defined in the Appendix.

The solutions of the equations of motion for the isotropic medium using the principle of virtual
displacements and the above displacement shape functions has been given by Kausel® and earlier for the special
case n = 0 by Waas.” For a cross anisotropic medium a solution is given in Reference 6.

The fulfilment of the boundary conditions at the surface and at the base of the layered medium (zero stress
and zero displacement, respectively) leads to two algebraic eigenvalue problems

Arr O 2 0 Brz Grr O 2 Mrr O fr W
. . — . . * s 4
([0 AJ""”{BLO]"R‘“*[O G] @ [0 M]) {f} o

(Apy K3+ Gpp— Q2 M, ) £, , = O (4b)

The eigenvalues kg ,and k, ,correspond to the wave numbers (i.e. the reciprocal of the wavelength, multiplied
by 2m) of generalized Rayleigh- and Love-waves, respectively. The vectors (£, 1.7 f,, describe the
corresponding mode shapes. They contain the values of the functions £ (z), £; (2), f (z) at the layer interfaces in
the vth mode. The matrices in equations (4a,b) are formed from the correspondmg element matrices given in
the Appendix using standard finite element assembly procedures.
The eigenvalue problems yield 44n, eigenvalues ky ,and 2«n, eigenvalues k; ,, where n, is the total number of
layers. For soil with material damping all eigenvalues are complex. Only those 3*nLelgenvalues with a negative
imaginary part are considered here in order to satisfy Sommerfeld’s radiation principle.”-®

A complete solution for the displacement field is the weighted sum of the 341, modes, or with equation (2)
and the weighting factors a,;

3*'1
u, = Z H,(r) f,(2) o, ®)
v=1
The matrix H(r) which is an analytical solution of equation (3), can be written as
1 0H,(kg, 1) 1 n
- v 0 PN H k .
kg, or ky, r k)
H,(r) = 0 H,(kg,r) 0 (6)
1 n 1 O0H(k., 7
H k . 0 — v
i ) ke, or

where the functions H,( . . . ) are the Hankel functions of the second kind and of order n. At the boundary with
radius r = r, the nodal displacements u; , are

o= W-a )
with

F, Hy K, ! —F ‘H K[!

g Fo «
Uso = (W5 W= F, -Hi o o= {(xk} (7a,b,c)
s L
Yo riF,-IrIR-K;;1 F, H, K[!
0
Ky = Diag (kg,) (7d)
K, = Diag(k.,) (7e)

Hg = Diag (H,(kg, o)) (7f)
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H, = Diag (H,(k,,"ro)) (78)
0H (kg -
H,, = Diag (—(a—“-l)- ) (7h)
r r=rq

ug, W, vo are the vectors of the nodal displacements in the r —, z—, ¢ — direction, F,, F,, F , are the modal
matrices of the eigenvectors f, ., f, . f o respectively. The vectors oy, & contain the mode participation factors
o, for Rayleigh- and Love-waves. The inverse relationship may be used to obtain the participation factors from
given displacements u; , as

=W u, (®)

Now the inhomogeneous problem of a layered continuum with a cylindrical boundary on which external
forces are acting is considered. With the principle of virtual displacements, the nodal forces can be expressed in
terms of the nodal displacements at the boundary, resulting in

:,0 = Rn . u:,O (9)
with
Pio={P, P.P,}" (9a)
The vectors P,, P, P contain the forces per radian in the radial, vertical and tangential direction, respectively.
The stiffness matrix of the transmitting element is obtained as

R,=Q W™! (10)
with
Qll QIZ
Q= 1Qx Qi (10a)
Qs Qs
2
Qll:rO'Arr.Fr.KR.HR+2.A‘/"P.Fr.KEI'<_:_HR+HIR>+rO.Drz'Fz‘HRI (IOb)
0
1
=-2nA_ F_ K ''{H—-—H
Q12 n-A,,F, K{ (L - L) (10c)
Qy =1y D, F, Hy Ki'—ro- A, F.-Hy (10d)
QZZzn.Dzr‘F(p.Kzl.HL (106)
- .1
Q;, = —2-n-AW-F,-KL1~<HR—E-HR> (10f)
e
Q2= Atf'w'Fw'Kfl'<2'H/L+"o'<Ki“272‘>' HL> (10g)
0

The stiffness matrix may be used directly with axisymmetric elements in the discretized domain. For a non-
axisymmetric discretization using three-dimensional isoparametric solid elements within the cylindrical
boundary, a transformation of the stiffness matrix has to be performed.!?

EXAMPLE

A viscoelastic homogeneous layer with a vertical surface load is considered. The uniformly distributed load P
acts on a square area of 2b*2b and is harmonically varying in time, Figure 2.

A cross anisotropic as well as an isotropic medium are investigated. The material properties are given in
Table I. In the cross anisotropic medium the ratio of the moduli of elasticity in horizontal and in vertical
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Figure 2. Soil model

direction is E,/E = 3 (or D,,/D,, = 2-5). However, in both media the shear moduli G,, in a vertical plane and
the vertical stiffness D, are identical. :

The damping in the medium is assumed to be of viscous type. If for instance G,, denotes the real shear
modulus in a vertical plane, the complex shear modulus G,, can be written

Gy: = G, (L+i"ag 1) an
with the dimensionless frequency
Q .
g = —xb (11a)
J(G.:/p)

The computation has been performed for a ratio H/b = 2 and a damping coefficient # = 0-5. The discretisation
of one eighth of the system with three-dimensional isoparametric solid elements with quadratic shape
functions is shown in Figure 3. Because of the non-axisymmetry of the model in the discretized domain the
stiffness matrix of the transmitting boundary is transformed according to References 10 and 11 using three
Fourier terms (n = 0, 4, 8).

The results are given in Figure 4 as compliance functions for the central point of the square area loaded. The
functions f, and f,, are defined as

4-

o

|

Wo =

(fiv—1S)p (12)

a

rz

They depend on the dimensionless frequency a;.
The compliance functions of the isotropic medium compare well with those of an analytical solution, given
in Reference 12. The solution for the anisotropic medium differs from the solution of the isotropic medium by

Table I. Material properties

G G

zz e rz

Drr Drz b

Isotropic 30 10 30 10 1-0
Anisotropic 7-47 2-57 3-0 2-3 1-0
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Figure 3. Finite element model

about 10 to 15 per cent. This applies to the static as well as to the dynamic displacements. The example indicates
that some cross anisotropic media may be approximated by an isotropic medium with adequate accuracy.

APPENDIX: MATERIAL LAW AND LAYER MATRICES
Material law

arr ’—Drr Dr(p Drz ] 8”
T e D, D, D, o oo
O-zz Drz DrZ DZZ 8-2

— M = 1
Trz Grz yrz (A )
Tre o Gry Tre
T(pz L Grz 'Y(pzv

Gr(p = % (Drr_Dr(p)
All elements of equation (Al) are complex in order to include the material damping of the medium.

Layer matrices

Material constants and layer thickness h refer to layer 1. The first and the second indices of the following
layer stiffness matrices refer to the direction of the forces and of the displacements, respectively.

A,=D, hl, (A2)
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A, =3+(D,—D,) k1, (A3)
A,.=G,.hl, (Ad)
Brz = Drz.lb—Grz.Ig (AS)
1
G =G 1L, (A6)
1
Gzz = Dzz'ﬁ.lc (A7)
Gyp= G, (A8)
M, =ph-I, (A9)
M., =M,, =M, (A10)
D,. =D, I, (A1l)
D., =G, 1, (A12)
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Figure 4. Compliance functions
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For quadratic expansion
1 4 2 —17
2= 735 2 16 2 (A13)
-1 2 4
i 3 —4 17
I, ¢ 4 0 -4 (A14)
| —1 4 -3
i 7 -8 17
I 3| - g8 16 —8 (A15)
1 -8 7_
For linear expansion the matrices are transformed as
N 1 0
I,=AT1-2 with i=]1 1 (A16)
0 1
I,=2A"1.4
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