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ABSTRACT 

 

This paper presents a consistent approach for modeling the connection between the column and 

the slab in the finite element analysis of concrete flat slabs. The model takes into account the 

normal stiffness as well as the bending stiffness of the column. The stress resultants of the 

column are transformed into the nodal forces of the finite element model of the plate.  Similarly, 

the transformation for the displacements is formulated. Using both relationships, the stiffness 

matrix of the column can be transformed to the nodal points of the plate. This is denoted as 

equivalent stiffness transformation (EST). The model also gives the normal force and the 

bending moments in the column, to be used in the column design. The model is particularly 

useful for taking into account the bending effects in edge and corner columns of flat slabs.  

 

 

1 Introduction 
Concrete flat slabs are widely used in central Europe and other parts of the world where 

concrete rather than structural steel is the preferred building medium. They are made from a 

reinforced or prestressed concrete slab supported by columns.  

The finite element method is well suited for the analysis of flat slabs. However, the modelling of 

the connection of the column and the slab is not evident. Normally, the column is considered as 

beam and the slab as plate structure. The problem in modelling the transition between beam and 

plate structures lies in the different descriptions of the stresses and sectional forces in both types 

of structures. The concept of point forces and moments which is successful in the analysis of 

beams results in singularities when applied to plates. Therefore, point supports are not well 

suited to model columns in the analysis of flat slabs. Different models are currently in use. All 

of them show some inconsistencies. In this paper a new improved model based on the concept of 

distributed supports is presented.    
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2 State of the art  
Flat slabs have been analysed for many years by means of the finite element method. The 

columns were first modelled as point supports, i.e. a nodal point of the finite elements model of 

the plate has been considered to be vertically restrained. Because of the restrictions and 

deficiencies of this simplified approach, improved models were later developed. The following  

are those most commonly used today, Fig. 1:  

 Point support 

 Elastic support (Winkler springs)  

 Fluid cushion model (constant pressure by the column head) 

 Rigid column head model 

Three-dimensional solid models for the column head used in research are generally not 

considered to be appropriate for practical application since they are not consistent with the 

design model of the column and the plate. 

 

Point support  

A point support introduces a point force into the plate. This results in a singularity of bending 

moments and shear forces in the plate at the point of application. In practice the model is used 

for slender columns (Kemmler, Ramm, 2001).  

 

Elastic support   

An improved model is the elastic support of the plate in the area of the column cross section 

using Winkler springs. This model avoids any singularity of sectional forces. The spring 

stiffness is usually determined based on the normal stiffness of the column. This assumption 

gives the spring stiffness as hAEk sz   and the Winkler modulus as hEk zs _  where As 

denotes the cross section area, E the Young’s modulus and h the height of the column.  

However, this stiffness does not represent the bending stiffness of the column. The rotational 

spring constant of the column is hIEk yy   where yI  is the moment of inertia of the 

column cross section and   a factor depending on the support condition of the opposite end of 

the column. For pin support 3  and for clamped support 4  are obtained. In case of two 

columns, one of the upper and one of the lower story, the stiffnesses are added, e.g. for identical 

columns with clamped ends 8 . The Winkler spring modulus corresponding to the rotational 

spring is obtained as szs hEk _ . Both modes – vertical displacement and rotation - cannot 

be described by a single Winkler modulus.  
 

Fluid cushion model 

The fluid cushion model is based on the assumption that stresses applied by the column on the 

plate are uniformly distributed. This assumption may be appropriate for inner panels of slabs 

where bending effects of columns are not predominant. It is not suited for columns in edge or 

corner panels since the effect of bending of the columns is neglected. 
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c) Fluid cushion modela) Point support b) Elastic support d) Rigid column head model

 
Fig. 1. Models for columns in the analysis of flat slabs  

 

 

Rigid column head model 

The head of the column is assumed to be rigid (Hartmann, Katz, 2002). The conditions of 

rigidity can be defined as rigid links and the corresponding degrees of freedom can be elimi-

nated. In this way numerical problems in the solution of the system of equations are avoided.  

Normally, this model gives no results in the plate over the column head. The inclusion of a rigid 

part in an elastic structure may be the origin of stress singularities near the rigid structural part. 

It  may also distort the sectional forces in the plate near the column head considerably.   

 

In order to avoid rigid inclusions in the finite element model, the elastic support model is often 

preferred. However, a consistent representation of the normal and the bending stiffness of the 

column is not possible with this model. Therefore, a new model has been developed in order to 

represent the normal and bending stiffness of a column consistently.   

 

 

3 EST model 

The basic assumption of the equivalent stiffness transformation model (EST model) is the linear 

distribution of the longitudinal stresses according to the beam theory in the column. They can be 

written 
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They are related to the principal axes  ,   of the column cross  section, Fig. 2. The stresses are 

now applied as “distributed loads” to the finite elements of the slab. Over the column cross 

section the plate is arbitrarily discretizised into quadrilateral finite elements. The stresses applied 

from the column to the plate elements are transformed to equivalent  nodal forces using the 

principle of virtual displacements. For a single 4-node element one obtains the nodal forces 
)(el

F  as: 
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The functional determinant )(JDet  is the determinant of the Jacobi operator. With xi, yi as 

coordinates of the nodes of the finite element one obtains: 
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The stresses p, applied at the plate elements can be interpolated from their nodal values pi as 
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Now the nodal forces are written with (1), (2) and (3): 
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The integral can be computed numerically by Gauss integration. However, for the quadrilateral 

element it also can be solved analytically (Werkle, 2001).  For a rectangular element with the 

side lengths a and b in x- and y-direction respectively, one obtains: 
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The element forces 
)(el

F  and the applied stresses 
)(el

p  of a single element are now related to the 

nodal points of the finite elements at the column head  by a topology matrix. One obtains:  
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Fig. 2.  EST model  
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With these relationships the nodal forces and the distributed loads can be related to the nodal 

points of the finite element model of the plate. Summing up the contributions for all elements 

over the column head one obtains  
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Here plF  and  
Pl

p  denote the contact forces and stresses related to the finite elements of the 

EST element. The stresses at the nodal points of the finite elements are obtained by introducing 

the corresponding coordinates in Eq.(1) as 
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With 
PlPl pAF   according to Eq.(7) the nodal forces which are equivalent to the sectional 

forces F
St

 at the column head are now 
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Now the transformation of the displacements and the rotations at the column head into the 

coordinate system of the plate is considered. It can be shown that the same transformation is 

valid, i.e.  

 PlSt wTw  ,              (11) 

where  TnPl wwww ........21            (11a) 

denotes the displacement of the nodal points of the plate and  

 TzSt ww               (11b) 

describes the vertical translation and the two rotations of the column head, Fig. 2. The displace-

ments w
St

 according to Eq.(11) are a weighted average of the nodal displacements Plw .  

 

The stiffness of the column is given by  
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where the spring constant kz relates to the vertical displacement, hIEk     to the 

rotation about the  - axis and  hIEk      to the rotation about the  -axis.  

The column stiffness according to Eq.(12) can now be transformed onto the nodal points of the 

plate. Using Eq.(9) and Eq.(10) one obtains 

 PlPlPl wKF  ,               (13) 

where  

TKTK St

T

Pl                 (14) 

represents the stiffness matrix of the EST element. 

After the solution of the system equations of the finite element model the element stresses and 

sectional forces are computed. For the EST element the forces at the column head are 

 PlStStStSt wTKwKF                (15) 

The normal force and the bending moments at the column head can be used for the design of the 

column.  

 

 

4 EST element for a rectangular column  

The plate is discretizised over the column cross section in 4 elements, Fig. 3 (Werkle 2000).  

The transformation matrix T according to Eq.(10) is evaluated as 
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Their columns relate to the vertical displacements of the nodal points 

  987654321 wwwwwwwwww Pl .          (17) 

The element stiffness matrix obtained by Eq.(15) with T acc. to Eq.(16) and x̂ , y̂ . 
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Fig. 3.  Finite element assemblage for a rectangular column 
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Fig. 4.  Flat slab:   (a) Flat with 3x3 panels;  (b) Finite element model of a quarter of the slab 

 

 

5  Example  

The application of the EST element is shown for the slab with free edges and 3x3 panels, given 

in Fig. 3. The slab is loaded by a constant distributed load p, its thickness is 30/Pld , the 

Poisson ratio is 2.0 . The quadratic columns with the dimensions 20/ ba  and the height 

2/Sh  are pin-supported at the lower end. The analysis is done using the plate element in the 

program SEPP (Sofistik GmbH, Unterschleißheim, Germany) based on Mindlin’s theory.  

 

For comparison two models with an elastic support by Winkler springs are investigated. The 

Winkler moduli have been chosen as Szs hEk _  corresponding to the normal stiffness of the 

column as well as Szs hEk  3_  corresponding to its bending stiffenss.   

Figure 5 shows the bending moment mx in sections A-A and B-B for the two Winkler spring 

constants and for the EST element. The sectional forces in the column are given in Table 1. In 

the corner column and in the edge column, the column stiffness influences the bending moments 

considerably. However, at the internal panel its influence can be neglected. The results of the 

elastic support with a Winkler modulus of Szs hEk  3_   agree well with the EST model in the 

example presented. If the EST model is not available in the program used, an elastic support 

with the Winkler modulus of the rotation should be used instead.  
 

 

Column )/( 2pFz  )/( 3pM x  )/( 3pM y   

A 0.219 0.0134 -0.0134  

B 0.474 0.0218 0.0003     Table 1. 

C 1.157 -0.0004 0.0004     Stress resultants in columns 
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6 Conclusions 

The EST model is well suited to represent the normal as well as the bending stiffness of 

columns with arbitrary cross section in the analysis of flat slabs. Since it shows no singularities 

it can also be used with adaptive mesh refinement. The concept of equivalent stress models can 

also be applied to other cases where the transition between finite elements with a different 

description of stresses has to be modelled.  
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Fig. 5.  Bending moment mx  

 
REFERENCES 

Hartmann F., Katz C. (2002), Statik mit finiten Elementen, Springer, Berlin, 2002 

Kemmler R., E. Ramm (2001), „Modellierung mit der Methode der Finiten Elemente“, Beton-

    Kalender 2001, Ernst & Sohn, Berlin 

Werkle H. (2000), Konsistente Modellierung von Stützen bei der Finite-Element-Berechnung 

    von Flachdecken, Bautechnik, 77 (2000), Ernst & Sohn, Berlin, Germany, 416-425.  

Werkle H. (2001), Finite Elemente in der Baustatik, 2nd edition, Vieweg, Wiesbaden, Germany  


