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Abstract 

 

In structural engineering, domains of finite elements with dissimilar stress assumptions and degrees of 

freedom are often used in the same model.  A typical example are elements for beams and plates in 

bending or in plane stress in the analysis of flat slabs and shear walls, respectively. 

 

The paper presents a consistent approach for modeling the connection between dissimilar finite 

element domains.  The nodal forces of the source system are represented by their stress pattern. These 

are transformed into the target system by a linear relationship.  Similarly the transformation of the 

displacements is formulated. Whereas the equilibrium conditions are fulfilled, the compatibility of the 

displacements are only fulfilled approximately. Using both relationships the stiffness matrix of the 

source system is transformed into the target system.  The method is called EST or Equivalent Stiffness 

Transformation.  

 

The application of the EST is shown for the beam-plate problem. Examples relating to the  column-

wall, column-slab and the halfspace-slab problem illustrate the practical value of the method.  The 

EST can be applied for a large class of problems in which dissimilar finite element domains have to be 

connected.  
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1 Introduction 

In the analysis of structures, finite elements with different stress representations and different degrees 

of freedom are often used in the same model. A typical example is the connection of  beam elements 

with plane stress finite elements. In the beam element the stresses are summed up to stress resultants as 

longitudinal forces, shear forces and bending moments. However, only distributed loads are allowed 

for the plate in order to avoid stress and displacement singularities. In addition the  moment 

communication at the end of the beam element has to be modeled, Fig. 1. Hence, the consistent 

modeling of the connection of a beam element with plane stress elements is not obvious.  

 

There are many cases where the transition between different stress and displacement systems has to be 

modeled. A usual problem in reinforced concrete structures is the connection of columns of flat slabs 

with the slab where the columns are represented by beam elements and the slab by plate elements in 

bending. Other examples are encountered when modeling soil-structure interaction in foundation slabs.  

2 Models for element transitions 

There are various ways to model transitions between different element types.  These are 

 Multipoint constraints 

o Transformation method  

o Lagrange multiplier method 

o Penalty method 

 Transition elements 

 Engineering approaches 

 Equivalent stiffness transformation (EST) 

 

To demonstrate the different approaches for element transitions the connection of  a beam with plane 

stress elements is considered as example. 

  

For multipoint constraints it is assumed that the displacements of the nodes can be described by rigid 

elements.  For the beam-plate connection in Fig. 1(a), e.g., these rigid constraints can be described for 

the nodes 1, 2 and 3 as given in the Figure. The degrees of freedom of the ‘slave’ nodes 1 and 3 are 

expressed by the translations and the rotation of ‘master’ node 2. If the displacement constraints are 

introduces into the global system of equations of the finite element model the degrees of freedom 1u , 

1v , 3u  and 3v can be eliminated. This method is called transformation method.  

 

There are other methods to take into account multipoint constraints. These are the Lagrange multiplier 

method and the Penalty method. In the Lagrange multiplier method additional variables are introduced 

into the global equations. They are called Lagrange multipliers and can be regarded as forces of 

constraint. For each constraint a Lagrange variable is introduced and the global equations are 

augmented by the corresponding constraint condition as additional equation.    
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(c)  Beam transition element    (d) EST model 

Figure 1: Models for element transitions   

 

 

In the penalty method additional variables the so-called penalty numbers are introduced. Based on the 

penalty numbers additional stiffness as well as additional forces are introduced into the global 

equations. The number of equations is not augmented. However the fulfillment of the constraint 

conditions is only approximate and depends on the penalty numbers chosen. If penalty numbers are 

zero the constraints are ignored. As the penalty numbers become large the constraints are very nearly 

satisfied. However, penalty numbers should not be chosen too large in order to avoid numerical ill-

conditioning of the modified global system.  

 

The transformation method as well as the Lagrange multiplier method fulfill the constraint conditions 

exactly whereas the penalty method is an approximate method. All multipoint constraints introduce 

artificial rigid elements into the model which may result in stress singularities and other disturbances 

of stresses and displacements.  

 

2/221 huu    21 vv   

2/223 huu    23 vv 
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Transition elements are another approach to connect dissimilar finite element domains. They are 

special finite elements to connect two elements of different types.  To demonstrate the formulation of a 

transition element, the simple beam transition element given in Fig. 1(b) is considered. The degrees of 

freedom of the element include two displacements and a rotation at the side where the beam is 

connected and two displacements per node where the plane stress element is connected. The transition 

element is a plane stress element with special interpolation functions which impose the static and 

kinematic assumptions given by the degrees of freedom of a beam on one side and a plane continuum 

element on the other side. Transition elements can be used to couple dissimilar elements without the 

use of  rigid constraint equations. They can be applied to one-to-one element connections only. 

Therefore they are not suited to multiple element connections as e.g. in Fig. 2. Hence, adaptive h-

meshing is not possible with transition elements. 

 

For engineering purposes, models as shown in Fig. 1(c) are used. The short beam elements act as rigid 

constraints. If the stiffness of the beam elements is chosen large enough the model fulfills 

approximately the a multipoint constraint conditions. However, it should not be chosen to large to 

avoid numerical ill-conditioning of the global equations. The stiffness in the plate is overestimated by 

these models. The additional beam elements in the plate may result in disturbances of stresses.  

 

A new approach for element transitions is developed based on the fulfillment of the equilibrium 

conditions and the approximate compatibility of the displacements between the two elements [1]. It is 

called Equivalent Stiffness Transformation or EST. The model avoids rigid constraints, allows 

multiple element connections and hence is suited for adaptive meshing. 

 

3 Equivalent stiffness transformation 

3.1 Method of transformation 

In the Equivalent Stiffness Transformation (EST) two stress systems, the source system and the target 

system  are considered. The stiffness matrix formulated in the source system is transformed by EST 

into the target system in which the global equations are formulated. In the example of the beam-plane 

stress element connection, the source system is the linear stress distribution in the beam which can be 

summed up to stress resultants. The stiffness matrix of the beam corresponds to the end forces and 

moments of the beam and  the  corresponding  degrees of  freedom.   The target system is  the plate  in  
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        (a) Finite Element    (b) Source and target system  

Figure 2: EST model    
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plane stress.  Its degrees of freedom are the nodal displacements of the element. Hence the stiffness 

matrix of the beam element relating to the degrees of freedom uB,, vB and B  is to be transformed into 

the degrees of freedom u1, v1 , u2,, v2, u3  and  v3  of the target system, Fig. 2.  

 

The transformation of the stiffness matrix in the source system is done in three steps: 

 

Step 1:  Determination of the stresses of the source system at the nodes of the target system 

In the source system the stresses are expressed by the nodal forces SF . The stresses 
T

p  at the nodal 

points of the target system are 

ST
FXp                        (1) 

For the beam-plate-connection the stresses in x-direction at the nodes 1 to n are 
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 SxyyTx
FIXp ,,
    yy IXX                  (2a) 

 

where A and I are the area and the moment of inertia of the beam section, respectively. A similar 

equation can be written for the shear force and the forces in y-direction.  

 

Step 2:  Determination of nodal forces in the target system for the stress pattern according to step 1 

The stresses are now applied as “distributed loads” to the elements of the target system. In the case of 

the beam-plate-problem the nodal forces corresponding to these element stresses are for one element 
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   ydpNtF x

el

Tx

)(

,   (3a) 

Here, N denotes the Matrix with the interpolation functions, px describes the distributed loads and t is 

the thickness of the plate (see Fig. 2).  

 

The beam-plane stress element problem is formulated for finite elements with linear shape functions 

N. The same functions can be used to interpolate the stresses between the nodal points as 

 
)(el

x

T

x pNp              (4) 

with  
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Introducing (4) into (3a) gives 
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or by integration 
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Equation (6) gives the nodal forces for a single element of the target system. The relationship is now 

extended to all elements of the target system which are connected with the source system as 

TxxTx pAF
,,             (8) 

The Matrix Ax is obtained by assembling the element matrices 
)(el

xA  of all elements connected to the 

source system. The element assemblage procedure is the same as for element stiffness matrices. The 

general relationship corresponding to (8) is written as 

TT pAF              (9) 

general, the matrix A depends on the finite element type in the target system as well as on the In 

function describing the stress variation in the source system. For quadrilateral plate elements in 

bending  the matrix A is given in [1]. 

 

 

Step 3:  Transformation of the stiffness matrix of the source system 

The transformation matrix for the element forces can be obtained easily with (1) and (9) as 

 S

T

T FTF                       (10) 

where 

 XAT
T

 .           (11) 

 

The node displacements are uS and uT in the source and in the target system, respectively. It can be 

shown that they are also transformed with the matrix T as 

 TS uTu            (12) 

In the source system the stiffness matrix is given by 

 SSS FuK            (13) 

Using (10) and (12) it can be transformed into the target system by 

 TTT FuK            (14) 

with 

 TKTK S

T

T           (15) 
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3.2 EST for a beam element and plane stress elements  

The application of the procedure described above is shown for the connection of a beam element with  

isoparametric plane stress elements with linear interpolation functions. In addition to the normal force 

and the bending moment according to (8), the shear force has to be transformed. The shear force 

results in forces in y-direction in the target system.  

 

The beam representing the source system has the degrees of freedom and nodal forces (see Fig. 2(b)) 

to be connected with the plate 
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The stiffness matrix of the beam is given by  
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Two meshes of the target system are considered, see Fig. 3. The procedure according to section 3.1 

gives if one element with linear interpolation function connected with the beam element (see Fig. 3(a)) 
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Figure 3: Connection of a beam with plane stress elements in an EST model    
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For a connection with two elements (Fig. 3(b)) the transformation matrix is  
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The application of equation (12)   TS uTu   illustrates the averaging process of the transformation 

matrix for the displacements.  

 

The transformation of  node a  by EST gives the modified stiffness matrix of the beam 
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Node b can be transformed similarly, if necessary. 

4 Applications 

4.1 Deep beams  

A deep beam with a large opening is taken as example, Fig. 4 [2]. The thickness of the wall is 0,5 m, 

modulus of elasticity 30000 kN/m
2
 and Poisson ration 0. Two models are analyzed. In the first model 

only plane stress elements are used. In the second model the beam-type domain of the wall above and 

below the opening is modeled by beam elements. In this model beam and plane stress elements are 

connected by EST according to section 3.2.  

 

The stress resultants in the sections I-I and II-II of  the beam-type domain above the opening are given 

in Table 1. In model 1 they are evaluated by integration of the corresponding plate element stresses 

whereas in model 2 they are obtained directly as sectional forces of the beam element. The integration 

in model 1 is based on element stresses instead of nodal stresses because of the discontinuity of 

stresses in the sections considered. The results demonstrate the accuracy of the EST beam element. 

With only one plate element connected with the beam element ( i.e. e = 1 m) sectional forces with high 

accuracy are obtained. Model 1 converges to this solution for smaller mesh size only.  

Table 1: Sectional forces. 

Section Sectional force Model 1, e = 1.0 m Model 1, e = 0.5 m Model 2, e = 1.0 m 

I-I Normal force       [kN] 1364 1364 -1362 

 Bending moment [kNm]   837 1553  1592 

 Shear force          [kN] -642 -642  -643 

II-II Normal force       [kN] -1364 -1364 -1362 

 Bending moment [kNm]    875  1632  1621 

 Shear force          [kN]  -642  -642  -643 
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(c) Principal stresses, FE model 1   (d) FE model 2: plate and beam elements, e= 1.0 m  

 

Figure 4: Deep beam with a large opening 

4.2 Flat slabs 

In the analysis of concrete flat slabs the connection of the column and the slab requires special models. 

A consistent approach is the obtained by EST. The stiffness matrix of the column which is modeled as 

beam is transformed by EST to the finite element system of the plate in bending, representing the slab. 

The transformation matrix for the columns-slab connection and applications are given in [1], [3], [4], 

Fig. 5.  
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Figure 5: Column-slab modeling by EST  
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4.3 Foundation slabs 

In the analysis of foundation slabs the interaction of the soil and the plate in bending is represented by 

a stiffness matrix of the soil. Assuming that the soil pressure acting on a plate element is uniformly 

distributed the displacement w  at the surface of a homogeneous elastic halfspace is obtained as     

  
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yx
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where E denotes the modulus of elasticity and   the Poisson ratio of the soil. The integration has to 

be done over the plate element area. Using this relationship the flexibility matrix of the soil can be to 

be computed. Its inverse is the stiffness matrix of the soil. It relates to the midpoints of the plate 

elements for the foundation slab (see Fig. 5). The transformation to the nodes of the foundation slab 

can be done by EST. For rigid foundations the results agree well with analytical solutions [5]. 

     

 
(a) FE-model of the slab and nodes for Soil-Structure-Interaction  (b) Deformation of a foundation slab 

Figure 5: Foundation slab 

5 Conclusions 

The EST is well suited to model the connection between domains of finite elements with different 

stress systems. The results agree well with more sophisticated finite element models. EST can be 

applied to use structural elements with different stress systems as beams with plate elements in the 

same finite element model. In EST-beams the sectional forces which are required in RC design, are 

obtained directly without integration of element stresses. EST elements can be developed for many 

dissimilar structural elements which can be assembled the same finite element model. 
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