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Abstract 

The connection of beam elements with shell elements in finite element models can be based on the assumption of a 
linear distribution of the displacements or on a linear distribution of the stresses. The first implies rigid body kinematics 
and is called “hard” connection whereas the second is based on equilibrium conditions and is called “soft” connection. 
The paper describes the formulation for the “soft connection” and its advantages over the widely used “hard 
connection”. This approach has first been applied to the column-slab problem in the analysis of flat slabs. As examples 
for the application of the approach the beam-wall problem is considered.  It demonstrates the practical value of the 
approach. 

 
 

1. Introduction 

In structural mechanics different stress descriptions are used for plates and beams. The most general 
description is the stress tensor used for three-dimensional solids or plates in plane stress. For beams and 
plates in bending, stress resultants like bending moments and shear forces are very successful engineering 
concepts. Sometimes it is efficient to use both stress descriptions in a finite element model. However the 
basic differences in both models may result in problems in such models. A point force e.g. which is a 
successful concept in beam models causes stress and displacement singularities in plane stress models.  

There are many cases where the transition between stresses and stress resultants has to be modelled. A 
typical example is the connection of  beam elements with plane stress finite elements. In the beam element, 
the stresses are integrated to stress resultants as longitudinal forces, shear forces and bending moments. 
However, only distributed loads are allowed for the plate in order to avoid stress and displacement 
singularities. In addition the moment communication at the end of the beam element has to be modelled, 
Fig.1. Hence, the consistent modelling of the connection of a beam element with plane stress elements is not 
obvious. Another typical problem in reinforced concrete structures is the connection of columns of flat slabs 
with the slab where the columns are represented by beam elements and the slab by plate elements in bending. 

 

2. Models for element transitions 

There are various ways to model transitions between different element types. These are 

• Multipoint constraints 
o Transformation method  
o Lagrange multiplier method 
o Penalty method 

• Transition elements 
• Engineering approaches 
• Equivalent stiffness transformation (EST) 
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For multipoint constraints it is assumed that the displacements of the nodes can be described by rigid 
elements.  For the beam-plate connection in Fig. 1(a), e.g., these rigid constraints can be described for the 
nodes 1, 2 and 3 as 

  2/221 huu ⋅+= ϕ ,       2/223 huu ⋅−= ϕ ,       21 vv = , 23 vv = . 

The degrees of freedom of the ‘slave’ nodes 1 and 3 are expressed by the translations and the rotation of 
‘master’ node 2. This method is called the transformation method. Other methods to take into account 
multipoint constraints are the Lagrange multiplier method and the Penalty method.     
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(a) Multipoint constraints                                 (b) Engineering models                     (c)  Beam transition element   

Figure 1: Models for element transitions 

Transition elements are another approach to connect dissimilar finite element domains. They are special 
finite elements to connect two elements of different types, Fig. 1(c).  

For engineering purposes, models as shown in Fig. 1(b) are used. The short beam elements act as rigid 
constraints. If the stiffness of the beam elements chosen is large enough, the model fulfils approximately the 
multipoint constraint conditions.  

A new approach for element transitions is developed based on the fulfillment of the equilibrium 
conditions and the approximate compatibility of the displacements between the two elements [2-5]. It is 
called Equivalent Stiffness Transformation or EST. The model avoids rigid constraints, allows multiple 
element connections, doesn’t result in stress singularities and hence is suited for adaptive meshing. 

 

3. Equivalent stiffness transformation 

In the Equivalent Stiffness Transformation two stress systems, the source system and the target system 
are considered. The stiffness matrix formulated in the source system is transformed by EST into the target 
system in which the global equations are formulated.  

F

F

a y1F
y

Fy2

x1 px1

x2
x2p

y

x

target source
system system

B

Nodes in

 x            xyσ        τ

x22

x

y
v

u
1 1

p
1 x1

u

u
3

2v 2

v3
p

p
3 x3

Node in

ϕ
uB

vB

 

 

(a) Finite Element    (b) Source and target system 

Figure 2: EST model    



In the example of the beam-plane stress element connection, the source system is the linear stress 
distribution in the beam which can be integrated to give stress resultants. The stiffness matrix of the beam 
corresponds to the end forces and moments of the beam and  the  corresponding  degrees of  freedom.   The 
target system is  the plate  in plane stress.  Its degrees of freedom are the nodal displacements of the element. 
Hence the stiffness matrix of the beam element relating to the degrees of freedom uB,, vB and Bϕ  is to be 
transformed into the degrees of freedom u1, v1 , u2, v2, u3  and  v3  of the target system, Fig. 2.  

 Method of transformation 

The transformation of the stiffness matrix in the source system is done in three steps: 

Step 1:  Determination of the stresses of the source system at the nodes of the target system 

      In the source system the stresses are expressed by the nodal forces SF . The stresses 
T

p  at the nodal 

points of the target system are 

ST
FXp ⋅= .                     (1) 

Step 2:  Determination of nodal forces in the target system for the stress pattern according to step 1 

The stresses are now applied as “distributed loads” to the elements of the target system. The nodal forces 
corresponding to these element stresses are  

TT pAF ⋅=                      (2) 

The Matrix A is obtained by assembling element matrices )(elA  of all elements connected to the source 

system. The element assemblage procedure is the same as for element stiffness matrices. The matrix A  
depends on the finite element type in the target system as well as on the function describing the stress 
variation in the source system. 

 

Step 3:  Transformation of the stiffness matrix of the source system 

The transformation matrix for the element forces can be obtained easily with (1) and (2) as 

 S
T

T FTF ⋅=                                 (3) 

where 

 XAT T ⋅= .                       (4) 

The node displacements are uS and uT in the source and in the target system, respectively. It can be 
shown that they are also transformed with the matrix T as 

 TS uTu ⋅=                      (5) 

In the source system the stiffness matrix is given by 

 SSS FuK =⋅                      (6) 

Using (3) and (5) it can be transformed into the target system by 

 TTT FuK =⋅                        (7) 

with  TKTK S
T

T ⋅⋅= .                      (8) 



 Example: EST for a beam element and plane stress elements 

The application of the procedure described above is done for the connection of a beam element with  
isoparametric plane stress elements with linear interpolation functions. The beam representing the source 
system has the degrees of freedom and nodal forces (see Fig. 2b) to be connected with the plate 
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The stiffness matrix of the beam with the nodes a and b can be written  
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If two elements with linear interpolation function are connected with the beam element the 
transformation matrix eq. (4) is    .    
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Eq. (11) illustrates the averaging process of the transformation matrix for the displacements.  

The transformation of  node a  by EST gives the modified stiffness matrix of the beam 
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Node b can be transformed similarly, if necessary. 

The model neglects the local stiffness of the beam at the connection. It can be taken into account 
approximately by adding the stiffness of a beam with the height h/2 at the nodes connecting the beam and the 
shell elements, e.g. nodes 1-2 and 2-3 in Fig. 3. The model with the stiffness extension is called ESTS.    
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Figure 3: Connection of a beam with plane stress elements in an EST model  (two element connection) 



4. Application: Deep beam with columns 

The Equivalent Stiffness Transformation can be applied to any beam-to-shell-connection. The case of a 
deep beam supported by two columns is considered, Fig. 4.  The columns are modeled by 

• finite elements (FEM) 
• beams with a rigid multipoint constraint connection (MPC) 
• beams with a EST connection   
• beams with a ESTS connection   

 

 

 

     Vertical stresses in section I-I, n=15   [1]     

Figure 4: Deep beam 

 

The element size is varied. Fig. 5 shows the finite element model for an element size of 0.5 [m] i.e. 
2 elements per [m] or n=2. The stresses and the displacements of the FEM model at selected points agree 
well with the EST model, Tab. 1 [1]. 

 

                                          

(a) FEM Model                                                                           (b) EST Model 

Figure 5: Deformed Finite Element Models  (n=2) 



Table 1: Stresses and displacements - FEM versus EST  

n  
stresses & displacements 

 
1 2 4 8 

ox,σ [ N/mm²] –1.80 / -1.83 –1.91 / -192 –1.94 / -195 –1.95/-1.96 

ux,σ [ N/mm²] 3.51 / 3.59 3.60 / 3.63 3.64 / 3.65 3.65 / 3.66 

FEM/ EST 

uw  [mm] 3.90 / 393 3.99 / 4.00 4.02 / 4.03 4.03 / 4.04 

 

The convergence of the bending moment of the column in section I-I is shown in Fig. 6. It can be seen 
that the multipoint constraint model behaves too rigid whereas the EST model is too soft. The improved 
ESTS model converges to the finite element solution. For moderately fine meshing with n=2 to n=4, 
however, the EST model gives the best results. In this case the slight overestimation of the stiffness of the 
isoparametric plane stress elements is compensated by the slight underestimation of the stiffness by the pure 
EST model.   
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Figure 6: Convergence of the column bending moment [kNm] in section I-I 

5. Conclusions 

The EST is well suited to model the connection between domains of finite elements with different stress 
systems. The results agree well with more sophisticated finite element models. EST can be applied to 
connect structural elements with different stress systems as e.g. beams with plate elements. In EST-beams, 
the sectional forces which are required in RC design are obtained directly without numerical integration of 
element stresses. The model can be extended to any other type of beam to solid connection. 
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