
MODELLING OF CONNECTION OF SHELL AND BEAM ELEMENTS  

MODELLING OF CONNECTIONS OF SHELL AND BEAM 
ELEMENTS IN FINITE ELEMENT ANALYSIS 

Horst Werkle1

University of Applied Sciences Konstanz, Germany 

 

SUMMARY  

The modelling of the connection of a beam with shell or solid elements in finite 
element analysis is considered. In the beam the stresses are summed up to 
stress resultants (longitudinal forces and bending moments) whereas for shell 
or solid elements only distributed pressures are allowed in order to avoid stress 
singularities. Different models to represent the beam-shell or beam-solid 
element connections are currently in use. All of these models possess some 
inconsistencies. In a widely used model the connection is defined by rigid body 
kinematics. This corresponds to a linear distribution of the displacements at the 
beam cross section according to the Bernouilli-Navier hypothesis. It can be 
shown that this type of connection overestimates not only the stiffness but also 
the sectional forces in the beam element at the connection.  

The paper presents a more consistent approach for modelling the connection 
between beam and shell elements based on the assumption of a linear 
distribution of longitudinal stresses instead of displacements over the cross 
section of the beam. The stress resultants of the beam element are transformed 
into the nodal forces of the shell elements by a linear relationship.  Similarly a 
transformation relationship for the displacements is formulated. Both 
relationships allow the transformation of the stiffness matrix of the beam 
element on a stiffness matrix relating to the nodal points of the shell elements. 
In this way the longitudinal as well as the bending stiffness of the beam 
element is taken into account consistently. The model also gives the normal 
and shear forces as well as the bending moments in the beam, to be used in 
design. Examples demonstrate the practical value of the approach.  
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1:  Introduction 

In structural mechanics different stress descriptions are used for plates and 
beams. The most general description is the stress tensor used for three-
dimensional solids or plates in plane stress. For beams and plates in bending, 
stress resultants like bending moments and shear forces are successful 
engineering concepts. Sometimes it is efficient to use both stress descriptions 
in the same finite element model. However the basic differences in both 
models may result in problems. A point force e.g. which is a successful concept 
in beam models causes stress and displacement singularities in plane stress 
models.  

For the connection of  beams with plane stress elements the transition between 
stress resultants and stresses has to be modelled. In the beam element, the 
stresses are integrated to stress resultants as longitudinal forces, shear forces 
and bending moments. For the plate, only distributed loads are allowed in order 
to avoid stress and displacement singularities. In addition the moment transfer 
at the end of the beam element has to be modelled, Fig. 1a. Hence, the 
consistent modelling of the connection of a beam element with plane stress 
elements is not obvious. Another typical problem is the connection of  beams 
with plates in bending when the beam acts perpendicular to the plate, as 
encountered in the connection of flat slabs and columns of reinforced concrete 
buildings. 

 

2:  Models for Element Transitions 

There are various ways to model transitions between different element types. 
These are 

• Multipoint constraints 

o Transformation method  

o Lagrange multiplier method 

o Penalty method 

• Transition elements 

• Engineering approaches 

• Equivalent stiffness transformation (EST) 

For multipoint constraints it is assumed that the displacements of the nodes can 
be described by rigid elements (Kugler 1999). For the beam-plate connection in 
Fig. 1(a), e.g., these rigid constraints can be described for the nodes 1, 2 and 3 
as 
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The degrees of freedom of the ‘slave’ nodes 1 and 3 are expressed by the 
translations and the rotation of ‘master’ node 2. This method is called the 
transformation method. Other methods to take into account multipoint 
constraints are the Lagrange multiplier method and the Penalty method.     

 

plane stress
elements

x

y

beam element

1

2

3

h2/

h/2

  

beam element

transition

plane stress
elements

element
 

(a) Multipoint constraints                  (b) Engineering models           (c) Transition element   

Figure 1: Models for element transitions. 
 

Transition elements are another approach to connect dissimilar finite element 
domains. They are special finite elements to connect two elements of different 
types, Fig. 1(c).  

For engineering purposes, models as shown in Fig. 1(b) are used. The short 
beam elements act as rigid constraints. If the stiffness of the beam elements 
chosen is large enough, the model fulfils approximately the multipoint 
constraint conditions (Cook 1995).  

A new approach for element transitions is developed based on the fulfilment of 
the equilibrium conditions and the approximate compatibility of the displace-
ments between the two elements. It is called Equivalent Stiffness Transforma-
tion or EST. The model avoids rigid constraints, allows multiple element 
connections, doesn’t result in stress singularities and hence is suited for 
adaptive meshing. 

 

3:  Equivalent Stiffness Transformation (EST) 

In the Equivalent Stiffness Transformation two stress systems, the source 
system and the target system are considered. The stiffness matrix formulated in 
the source system is transformed by EST into the target system in which the 
global equations are formulated (Werkle 2001).  
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(a) Finite Element    (b) Source and target system 
Figure 2: EST Model. 

In the example of the beam-plane stress element connection, the source system 
is the linear stress distribution in the beam which can be integrated to give 
stress resultants. The stiffness matrix of the beam corresponds to the end forces 
and moments of the beam and the corresponding degrees of freedom.   The 
target system is the plate in plane stress.  Its degrees of freedom are the nodal 
displacements of the element. Hence the stiffness matrix of the beam element 
relating to the degrees of freedom  and BB vu , Bϕ  is to be transformed into the 
degrees of freedom  of the target system, Fig. 2.  332211 ,,,,, vuvuvu

 

Method of transformation 

The transformation of the stiffness matrix in the source system is done in three 
steps (Werkle 2002a): 

Step 1:  Determination of the stresses of the source system at the nodes of the 
target system 

In the source system the stresses are expressed by the nodal forces SF . The 
stresses 

T
p  at the nodal points of the target system are 

ST
FXp ⋅= .                     (1) 

Step 2:  Determination of nodal forces in the target system for the stress 
pattern according to step 1 

The stresses are now applied as “distributed loads” to the elements of the target 
system. The nodal forces corresponding to these element stresses are  

TT pAF ⋅=                      (2) 
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The Matrix A is obtained by assembling element matrices )(elA  of all elements 
connected to the source system. The element assemblage procedure is the same 
as for element stiffness matrices. The matrix A  depends on the finite element 
type in the target system as well as on the function describing the stress 
variation in the source system. 

Step 3:  Transformation of the stiffness matrix of the source system 

The transformation matrix for the element forces can be obtained easily with 
(1) and (2) as 

 ST FTF ⋅= T                                 (3) 

where 

 XAT T ⋅= .                     (4) 

The node displacements are Su  and Tu  in the source and in the target system, 
respectively. It can be shown that they are also transformed with the matrix T 
as 

 TS uTu ⋅=                      (5) 

In the source system the stiffness matrix is given by 

 SSS FuK =⋅                      (6) 

Using (3) and (5) it can be transformed into the target system by 

 TTT FuK =⋅                      (7) 

with  TKTK S
T

T ⋅⋅= .                    (8) 

 

4:  Applications 

EST for a Beam and Plane Stress Elements 

The application of the procedure described above is done for the connection of 
a beam element with  isoparametric plane stress elements with linear 
interpolation functions. The beam representing the source system has the 
degrees of freedom and nodal forces (see Fig. 2b) to be connected with the 
plate 
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The stiffness matrix of the beam with the nodes a and b can be written  
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If two elements with linear interpolation function are connected with the beam 
element the transformation matrix eq. (4) is    .    
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Eq. (11) illustrates the averaging process of the transformation matrix for the 
displacements.  

The transformation of  node a  by EST gives the modified stiffness matrix of 
the beam 
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Node b can be transformed similarly, if necessary. 
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Figure 3: Connection of a beam with plane stress elements in an ESTS model. 
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The model neglects the local stiffness of the beam at the connection. It can be 
taken into account approximately by adding the stiffness of a beam with the 
height h/2 at the nodes connecting the beam and the shell elements, e.g. nodes 
1-2 and 2-3 in Fig. 3. The model with the stiffness extension is called ESTS. 

 

Example:  Deep beam with columns 

The Equivalent Stiffness Transformation can be applied to any beam-to-shell-
connection. The case of a deep beam supported by two columns is considered, 
Fig. 4 (Werkle 2004).  The columns are modelled by 

• finite elements (FEM) 
• beams with a rigid multipoint constraint connection (MPC) 
• beams with a EST connection   
• beams with a ESTS connection   

The element size is varied. Fig. 5 shows the finite element model for an 
element size of 0.5 [m] i.e. 2 elements per [m] or n=2. The stresses and the 
displacements of the FEM model at selected points agree well with the EST 
model, Tab. 1. 

 
     Vertical stresses in section I-I, n=15   

Figure 4: Deep beam. 
 

Table 1: Stresses and displacements - FEM versus EST  

n stresses & displacements 
1 2 4 8 

ox,σ [ N/mm²] –1.80 / -1.83 –1.91 / -192 –1.94 / -195 –1.95/-1.96 

ux,σ [ N/mm²] 3.51 / 3.59 3.60 / 3.63 3.64 / 3.65 3.65 / 3.66 

FEM/ 
EST 

uw  [mm] 3.90 / 393 3.99 / 4.00 4.02 / 4.03 4.03 / 4.04 
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(a) FEM Model                                                                           (b) EST Model 

Figure 5: Deformed Finite Element Models  (n=2). 
 

The convergence of the bending moment of the column in section I-I is shown 
in Fig. 6. It can be seen that the multipoint constraint model behaves too rigid 
whereas the EST model is too soft. The improved ESTS model converges to 
the finite element solution. For moderately fine meshing with n=2 to n=4, how-
ever, the EST model gives the best results. In this case the slight overestima-
tion of the stiffness of the isoparametric plane stress elements is compensated 
by the slight underestimation of the stiffness by the pure EST model.  
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Figure 6: Convergence of the column bending moment [kNm] in section I- I. 

 

EST for Beams acting perpendicular to a plate in bending 

Beams perpendicularly acting to a plate are typical for columns on flat slabs in 
reinforced concrete constructions, Fig. 7.  
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Figure 7: Connection of a Column with a Reinforced Concrete Slab. 

Assuming again a linear distribution of the longitudinal stresses according to 
the Bernouilli-Navier hypothesis the procedure described above can be applied. 
The transformation matrix is given for the case of a beam with rectangular 
cross section and a discretisation of the plate in four finite elements in the beam 
section acc. to Fig. 8 (Werkle 2000).   

With the displacements wT of the nodal points perpendicular to the plate and 
the rotational and translational degrees of freedom of the beam wS as 
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respectively, the transformation matrix according to Eq. (8) is obtained as 
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With Eq. (4) the displacements of the source system (beam) can be understood 
as a weighted average of the displacements of the target system (plate).  

 

Figure 8: Finite element assemblage for a rectangular column. 
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Example: Regular flat slab with 3x3 panels 

The slab is loaded by a constant distributed load p, its thickness is , 
the Poisson ratio is 

30/=Pld
2.0=µ , Fig. 9 (Werkle 2002b). The quadratic columns 

with the dimensions  and the height 20/== ba 2/=Sh  are pin-supported a
the lower end. 

t 
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         (a) Flat with 3x3 panels 
                                                            
      (b) FE model of a quarter of the slab 

Figure 9: Finite element model of a flat slab. 

 

For comparison two models with an elastic support by Winkler springs are 
investigated. The Winkler moduli have been chosen as Szs hE=_k  
corresponding to the normal stiffness of the column as well as Szs 3_ hEk ⋅=  
corresponding to its bending stiffness.   

Figure 10 shows the bending moment  in section B-B for the two spring 
constants and for the EST element. In the corner column and in the edge 
column, the column stiffness influences the bending moments considerably. 
However, at the internal panel its influence can be neglected. The results of the 
elastic support with a Winkler modulus of 

xm

Szs hEk ⋅= 3_   agree well with the 
EST model. The stress resultants in the column are given in Table 2. 
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Table 2: Stress Resultants in the columns (beam)  

Column )/( 2⋅pFz  )/( 3⋅pM x  )/( 3⋅pM y  
A 0.219 0.0134 -0.0134 
B 0.474 0.0218 0.0003 
C 1.157 -0.0004 0.0004 
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Figure 10: Bending moment mx, section B-B. 
 

It should be mentioned that the EST method can also be applied to any other 
type of beam cross section and to highly sophisticated structures as e.g. the 
modelling of complete buildings, Fig. 11. 

 

 

 

 

 

 

 

 

 

Figure 11: Model of a RC building    (Gerold, 2004). 
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5:  Conclusions 

The EST is well suited to model the connection between domains of finite 
elements with different stress systems. The results agree well with more 
sophisticated finite element models. EST can be applied to connect structural 
elements with different stress systems as e.g. beams with plate elements. In 
EST-beams, the sectional forces which are required in design are obtained 
directly without numerical integration of element stresses. The model can be 
extended to any other type of beam to solid connection. 
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