

Identifying, Sustaining and Strengthening the Digital Thread:

The Key Role of BIM Standards in shaping / transforming our Collaboration Infrastructure and realizing

High-Performance Buildings

Dana K. Smith, FAIA

Program Director, National Institute of Building Sciences

Lynn A. Hiel

STRABAG AG

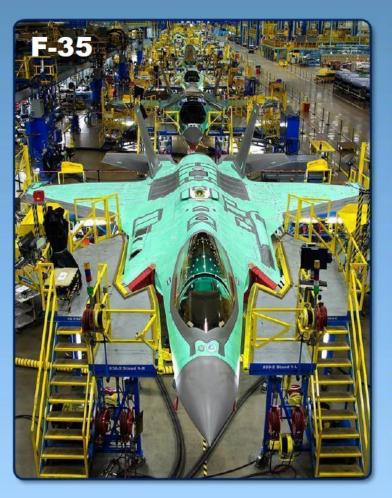
Building Information Exchange

Informat

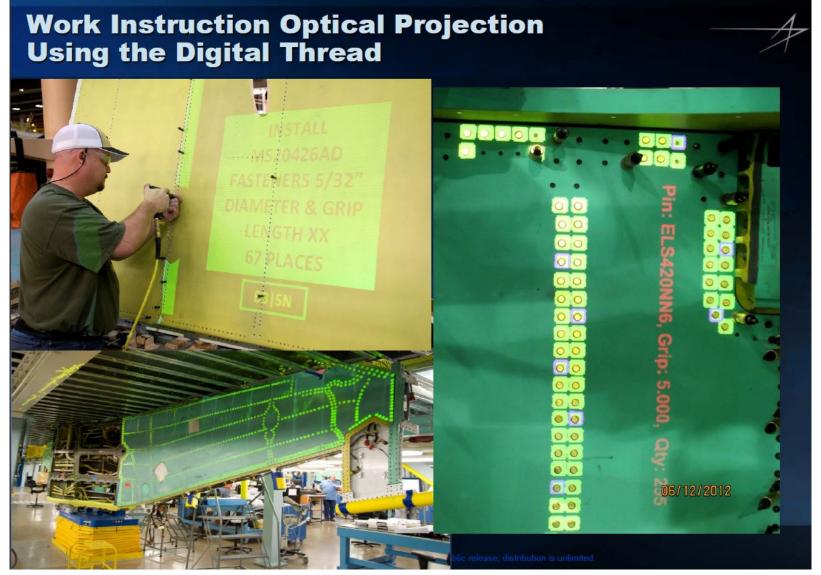
Death of Achilles, Paris left shooting, in the center Apollo directs the arrows to Achilles Heel, c. 460 BC Pelike, Niobid Painter

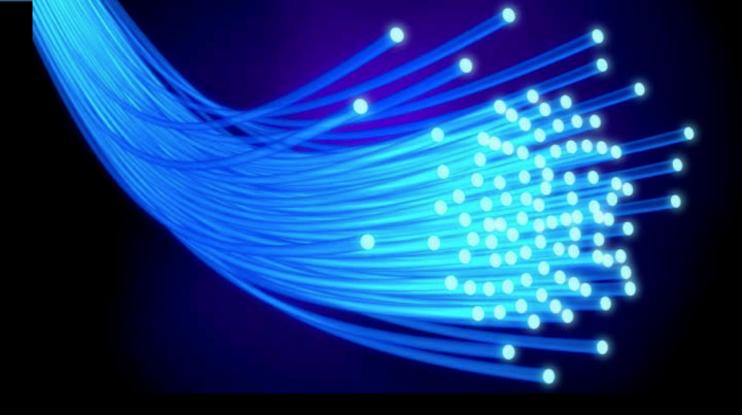
Agenda

- Introduction: Digital Thread
 - Concept from manufacturing
 - Current & Future States
- National BIM Standard United States™
 - Background & Anatomy of a Standard
 - Standards Development / Voting Process
 - The Intelligent Client
 - Challenges: The Interface with US Legal System / Construction Laws
 - Vision of NBIMS: the Trajectory
 - Lessons Learned & Recommendations
 - Conclusion



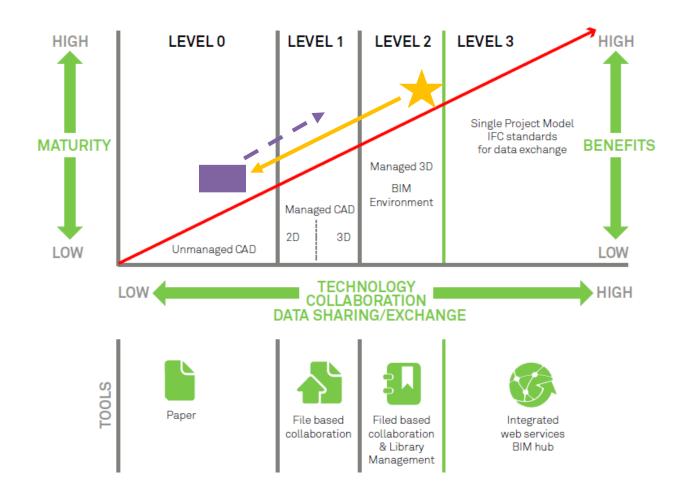
Production Lines

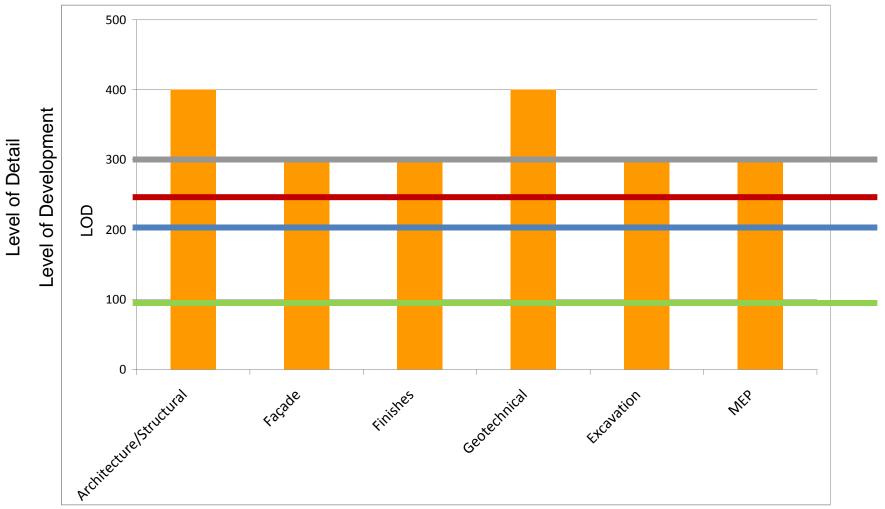




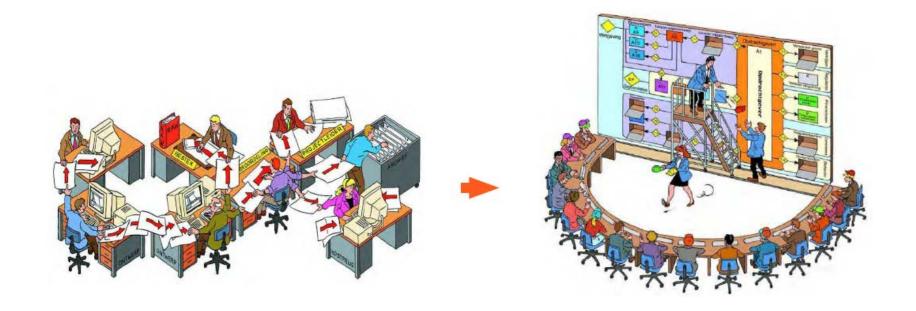
Kinard, D.: New Reality Development, Migration, and Strategic Transition of Manufacturing Technologies to address future Weapons System Platforms, 2013.

BIM can be viewed as a medium used to form the fibers of a unifying 'Digital Thread.'

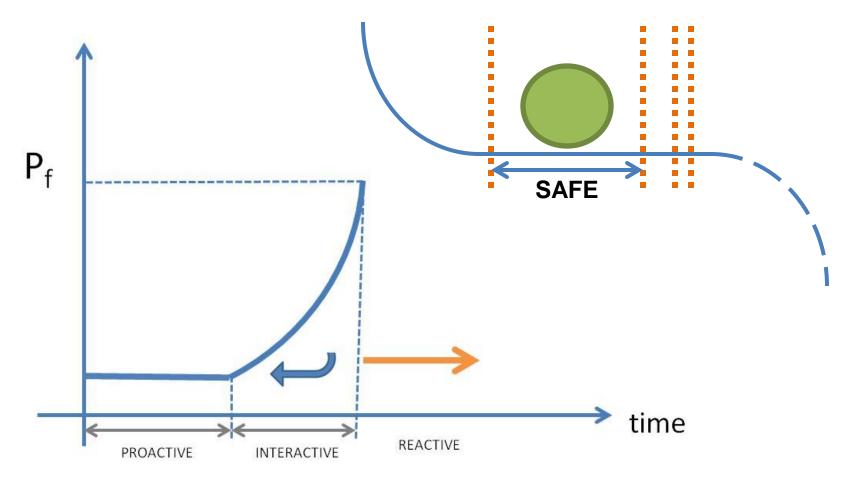

Standards define the **Cohesion**, **Continuity**, **and Robustness** of this Digital Thread.

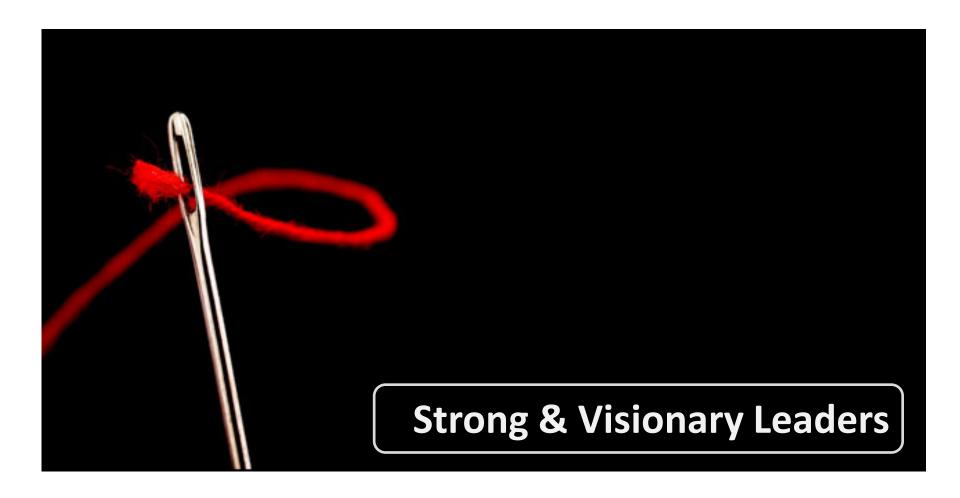

Current State: a Discontinuous & Fraying Thread

Future State: a Cohesive Thread



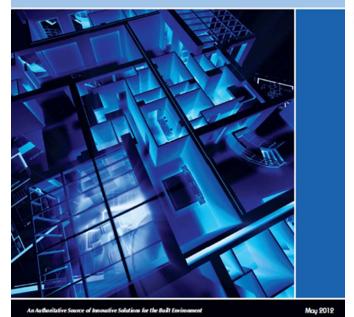
Hiel, L.: 'A Survey of Building Information Modeling in the German and United States Construction Markets,' Personal Communication, 2012.


Future State: a Continuous Thread


Future State: a Robust Thread

Bea, R.: Leanring from Failures: Lessons from the Recent History of Failures of Engineered Systems., Berkeley University of California at Berkeley, 2006. [Online] Avilable: http://ccrm.berkeley.edu/pdfs_papers/bea_pdfs/learning_from_failures2.pdf. [Accessed 26 June 2013]

Weaving the Digital Thread


National BIM Standard - United States™ Project Committee

building SMARTalliance

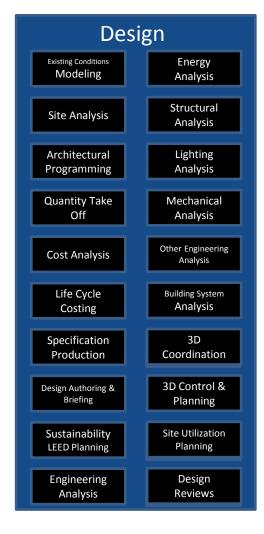
National BIM Standard - United States*

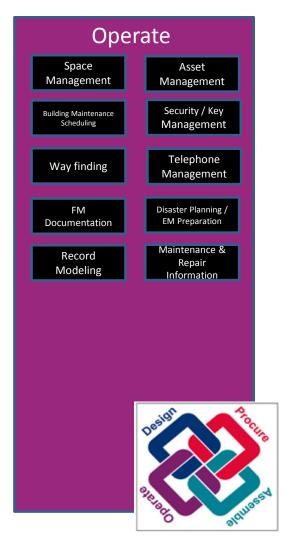
Transforming the Building Supply Chain Through Open and Interoperable Information Exchanges

Key

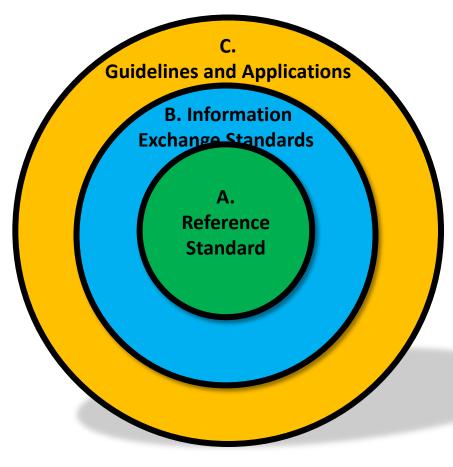
- D = Design
- P = Procure
- Assemble

Name	Company	City, State DPAO
Christopher Ackerman	U.S. Department of Energy - Office of Science	Germantown, MD
Amadou Agne	Koydol, Inc.	Washington, DC
Dave Alley	Church of Jesus Christ of Latter Day Saints	Salt Lake City, UT
Robert F. Anderson	Nemetschek North America	Columbia, MD
Alex Araujo	Texas A&M University System	College Station, TX
Larry Asaro	Symmes Maini & McKee Associates	Cambridge, MA
Howard Ashcraft, Jr.	Hanson Bridgett, LLP	San Francisco, CA
Paul Audsley	NBBJ	Columbus, OH
Salman Azhar, Ph.D.	Auburn University	Auburn, AL
Cindy Baldwin	ACAI Associates, Inc.	Fort Lauderdale, FL
Andrew Baranowski	ESD	Chicago, IL
Patrick Barry	Reaction Architects, L.L.C.	Farmington Hills, MI





1a. Background



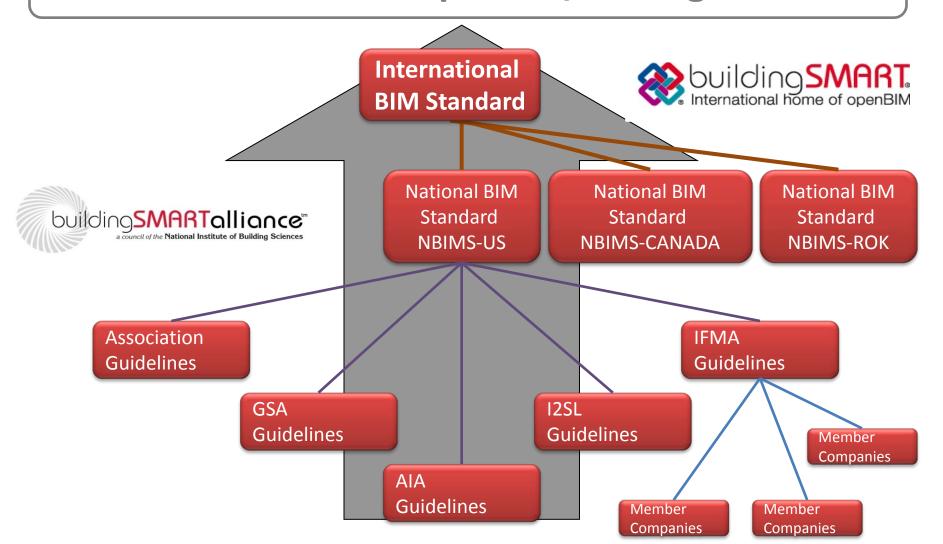
1b. Anatomy of a Standard

A. Reference Standards

- A.1. ISO Standards
- A.2. Normative Standards
- A. 3. Conformance Specifications
- A. 4. Test Suite

B. Information Exchange Standards

- **B.1. Information Exchanges**
- **B.2. Reference Processes**
- **B.3. Reference Specifications**
- **B.4. Reference Examples**


C. Guidelines and Applications

- **C.1.** Contract Specifications
- **C.2. Best Practice Guides**
- **C.3. Open Standards based Applications**

2. Standards Development / Voting Process

2. Standards Development / Voting Process

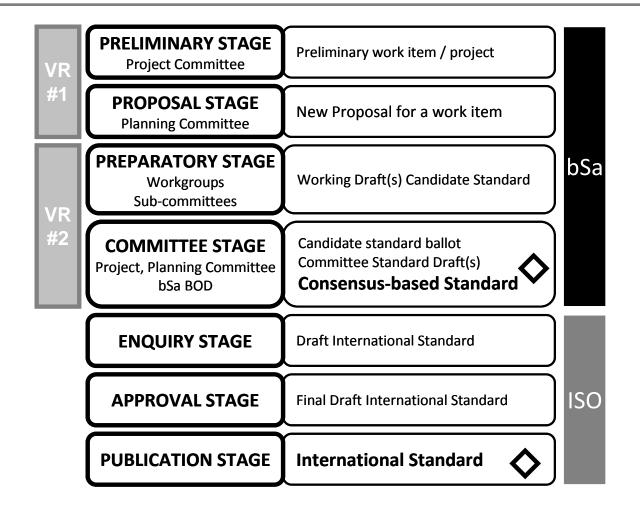
International BIM Standard

Assigned Room
Work together on
final ISO version

This is an ISO WG

Technical Committee (TC)
Sub-Committee (SC)

National BIM Standard NBIMS-US National BIM Standard NBIMS-CANADA


Approves NWI

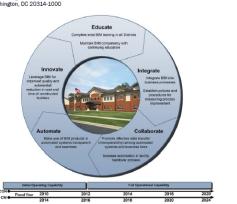
National BIM Standard NBIMS-ROK National BIM Standard NBIMS-Others

2. Standards Development / Voting Process

3. The Progressive Client

US Army Corps of Engineers_® Engineer Research and Development Center

ERDC SR-12-2


Engineer Research and Development Center

November 2012

The US Army Corps of Engineers Roadmap for Life-Cycle Building Information Modeling (BIM)

US Army Corps of Engineers
Directorate of Civil Works
Engineering and Construction Branch
Washington, DC 20314-1000

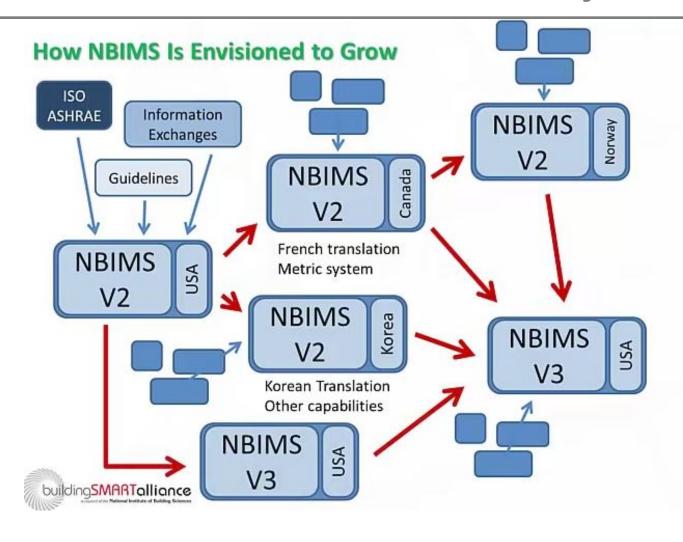
Approved for public release; distribution is unlimited.

BIM USE WORKSHE	ET				•		
BIM Use*	Value to Project	Responsible Party	Value to Resp Party	Capability Rating	Additional Resources / Competencies Required to Implement	Notes	Prowith
	High / Med /		High / Med / Low	Scale 1-3 (1 = Low)			YES:
				Resources Competency Experience			
3D Coordination (Design)	High	Architect Structural Mechanical Electrical BIM Engineer Plumbing	High High High High High	3 3 3 3 2 2 3 2 1 3 2 2 3 3 3 3 3 3 3	BIM Model and Analysis Programs to Help Determine Potetential Clashes Between Disciplines	Coordinating and modelling took place at the same time. Creating the BIM model took longer than originally anticipated due to the tasks happening simultaneously.	Y
Design Authoring	High	Architect	High	3 3 3 3	I		Y
		BIM Engineer Structural Mechanical Electrical Plumbing	High High High High High	3 3 3 3 2 2 3 2 1 3 2 2 3 3 3 3	Design plans and 3D modeling software to create overall BIM Model, Requires close collaboration between BIM users	Teamwork and experience allowed decisions to be made that were best for the project team and	
3D Coordination (Construction)	High	Architect BIM Engineer Structural Mechanical Electrical Plumbing	High High High High High	3 3 3 3 3 3 3 2 2 3 2 1 3 2 2 3 3 3 3	BIM Engineer to lead meetings throughout design and construction. Members are to meet on site levelty in order to complete different building areas in their entirety.	Coordinating and modelling took place at the same time. There were a lot of coordination issues which slowed this process much more than expected.	Y
Generate Shop Drawings	High	Architect Structural Mechanical Electrical Plumbing	High High High High	3 2 2 3 2 1 3 3 1 3 3 3 3 2 2	3D Model Manipulation Tools Ability to effectively communicate between design, construction, and facilities management teams	Changes are made to models during weekly meetings and noted in order to make changes to subcontractor models and produce up-to-date drawings.	Y
Record Modeling	Low	Mechanical Lighting Structural	Low Low	1 1 1	Ability to understand typical equipment operation and maintenance practices	General Contractor is not legally required to give model to owner, but will hand over once complete.	Y
Vitual Mockup	Medium	BIM Engineer Architect Structural	Low Low	3 3 3	Drawings and Specs for specific systems to be constructed virtually	Originally a BIM Goal to construct virtual mockups, however this goal was never achieved	N

4. Challenges: Interface with US Legal System / Construction Laws

Current:

All participants affected by suit


Future With Metadata

- Only person responsible will be affected
- Metadata identifies who, what, and when
- Helps identify incompetent practitioners

5a. Vision of the NBIMS: the Trajectory

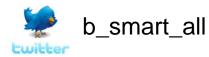
5b. Lessons Learned & Recommendations

- BIM is an enabler not the final product
- 2. Promote open standards for BIM
- 3. Start with the end in mind
- 4. Build the facility virtually as a model then build from the model
- 5. Think holistically Full lifecycle
- 6. Enter data one time and re-purpose
- 7. Data entry and maintenance are part of business process
- 8. Detail information can be summarized
- 9. Seek to move to International Standards
- 10. We have just begun

6. Conclusion

I Propose to establish an MOU with the German Chapter to collaborate on standards development

If we all work together we will achieve better and faster results to the benefit of all of us - so let's just do it, we can start today."



For additional information please contact:

Dana K. Smith, FAIA
Program Director

National Institute of Building Sciences

dsmith@nibs.org

Lynn A. Hiel

Project Engineer /
BIM Coordinator OWC Utrecht
STRABAG AG

lynn.hiel@strabag.com

