





Schüßler-Plan

Ingenieurgesellschaft für Bau- und Verkehrswegeplanung mbH Sankt-Franziskus-Straße 148 40470 Düsseldorf

Technology Arts Sciences TH Köln

BIM in Bridge Design – 3D-Modeling, Design Embedded FE-Simulation and Drawings, A large scale project in Hamburg's Port Area

Markus Nöldgen, Cologne University of Applied Sciences, TH Köln Andreas Bach, Schüßler-Plan Ingenieurgesellschaft mbH, Düsseldorf





# Agenda

- 1 Project
- 2 3D-Modeling
- 3 (Semantic) Data Integration
- 4 Design Embedded 2D/3D-Drawings
- 5 Design Embedded 3D-FE-Simulation
- 6 Conclusions and Discussion





### **Project – Flyover with Intersection in a Port Area**







### **Project – Flyover with Intersection in a Port Area**

**Project name** Flyover Road Crossing in a Port Area Lifecycle classification Draft Design, LoD200/300, Technical Drawings, Structural FE-Simulations **Project-phases with BIM/5D methods/technologies** Draft Design, Derived standardized drawings and Finite-Element Simulation The measurable benefit founded in these methods Improvements in change management (Adaptability, Associativity) Improvements in FE-Simulation techniques (design embedded, effort reduction, automation in pre-processing) Improvements in model, drawing and simulation coincidence (major increase in quality!) Difficulties as a result of the use of BIM/5D methods and chosen solutions Find new 2D and 3D drafting techniques Close GAPs in interfaces BIM2FEM Increase relevance of BIM in infrastructure projects





### **Project – Important Structural Characteristics**





### **T-interchange bridge structure –** 3D-Modeling

- Bridge deck variability
- Geometrically complex deck and superstructure (double curved)
- > 3 fields with pre-stressed girders + composite girders at intersection
- > Long structure ( $\sum$ ~1km bridge deck)





# Agenda

- 1 Project
- 2 3D-Modeling
- 3 (Semantic) Data Integration
- 4 Design Embedded 2D/3D-Drawings
- 5 Design Embedded 3D-FE-Simulation
- 6 Conclusions and Discussion





Prestressed RC-Structure at intersection with entlargement into RC-steel composite girders at junction

- Design using 4 independent space curves (splines)
- Variable extrude (sweep)
- Coupling of intersecting free form surfaces and curves
- Top-Down-Modelling for adaptive variation studies
- Drawings generated according to design standards



© TH Köln, Schüßler-Plan Ingenieurgesellschaft mbH, 2015







### **Parametric Controling**



### **Top-Down-Modelling**



### **Parametric Controling**

- Parametric Cross-Section
- Guide curve
- Constraint surfaces

### Sweep along alignments

- Variable extrusion  $\rightarrow$  B-REP
- Boolean operation with freeform bodies





### Accuracy of curves and model



- Alignments are approximated by Non-Uniform-Rational-B-Splines
- Splines transition constraints: G0–, common point", G1–, common tangents", G2–, common curvature"
- The Quality of the Model is determined by the quality of the curves





# Agenda

- 1 Project Studies
- 2 3D-Modeling
- 3 (Semantic) Data Integration
- 4 Design Embedded 2D/3D-Drawings
- 5 Design Embedded 3D-FE-Simulation
- 6 Conclusions and Discussion





### Important measurements are associatively calculated and visualised



Measurements are associciatively calculated, stored and integrated as PMI within construction modell (PMI: Product Manufacturing Information)





### Important attributes are associated and visualized



Informations (attributes) of construction modell are saved as PMI and visualised. Here exemplaric as foundation in axis S80.





### Important attributes are associated and visualized



Standardised description, coordinates of important bridge points, attributes





# Agenda

- 1 Project Studies
- 2 3D-Modeling
- 3 (Semantic) Data Integration
- 4 Design Embedded 2D/3D-Drawings
- 5 Design Embedded 3D-FE-Simulation
- 6 Conclusions and Discussion





### Master-Model-Concept

### **Master-Model**





### Drawing







### **FE-Analysis**







### **Drawings derived from 3D-Model**







### **Digital Draft Design – BIM- Construction Modell 2017**



3D-Modell + BIM-Viewer for visualisation of 3D-Geometry, modell attributes and access of linked database for additional informations (documents, drawings ...)





### **Modellinformation for Overview and Patterning**



### **3D-Modell includes and visualizes:**

Street routing , main axes, north arrow, Reference point





### Link of Data Base using URLs



Structure of final draft design is integrated within modell and linked to database

### using URLs





### Important callouts are integrated and visualized



Left: Bearing Symbols, Span length Right: Dimensions, i.E. Pier





### How Interactive is the modell?

|                                                      | Eigenschaften                                                                                                     |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Fundament \$80<br>Expositionsklasse: XC2,XD2,XF2,XA1 | LAYER: 1<br>Name: Fundament_S70_71_1304<br>Translation Date: 2016/08/01-15:48:04<br>Translator Version: NX 10.0.0 |
| Belongüte: C30/37                                    | Als Spalte hinzufügen Drucken In Datei exportieren<br>OK Abbrechen                                                |

Informations (Attributes) can be directly derived from context menu an be

exported, measurements within .jt-Modell are possible





# Agenda

- 1 Project Studies
- 2 3D-Modeling
- 3 (Semantic) Data Integration
- 4 Design Embedded 2D/3D-Drawings
- 5 Design Embedded 3D-FE-Simulation
- 6 Conclusions and Discussion





### Master-Model-Concept

### **Master-Model**





### Drawing







### **FE-Analysis**













### Design of a three-span prestressed bridge



# Calculation Model of the superstructure: geometrical constraints







### Traffic lanes in projection on the bridge deck, cut in surface



### **Cross section girder axis cut in surface**







### Main axis cut in surface to define fieldwise loaded areas



### **Positioning of points for support reactions**







### Calculation model: geometric and static constraints

### Summary:







### **Finite-Element-Discretization:**

4-Node versus 10-Node Tetrahedron-Elements

Linear form function

**Quadratic form function** 









# Solid – Tetrahedron Surface Bridge Deck – Shell Tendons - Splines







### Fieldwise loading onto double-curved bridge deck







### Integration objects, controlling girder, whole cross section







### Local tensile stresses in longitudinal direction - Decompression









# Agenda

- 1 Project Studies
- 2 3D-Modeling
- 3 (Semantic) Data Integration
- 4 Design Embedded 2D/3D-Drawings
- 5 Design Embedded 3D-FE-Simulation
- 6 Conclusions and Discussion





## **Conclusions**

- More work in the beginning
- Quality improvements (3D avoids gaps, failures, allows for measurements, semantic data integration...)
- More Flexibility and Automated Work (e.g. alignment change)
- Referenced and Automated Drawings; Augmented Reality with PMI, Attributes, Measurements
- Referenced FEA as Design Embedded Simulation
  - Coincidence of 3D-Model, Drawings and FEA
  - Coherent set of data, updating and optimization