

Subject-specific competencies:

• Students are familiar with the basic software technologies.

• They are able to evaluate the use of software technologies in order to become self-sufficient in
this rapidly evolving area.

• They are able to analyze and evaluate software engineering issues and problems.

• They are able to develop high quality software components for electrical engineering
applications.

• They know and understand the three main principles of object-oriented programming for
developing software.

• They can install software development tools on a computer.

• They know and can use an integrated development environment (IDE) to create object-oriented
programs.

• They understand the concepts of event-driven graphical user interfaces (GUI), and can use tools
for quickly designing such graphical user interfaces.

Methodological competencies:

• Students know the tasks, methods and tools of professional software development.

• They can act in the various roles of modern software development processes.

• They can transform a written problem description into a first draft of an object-oriented software
design.

• They can translate a software design specified as a UML class diagram into an object-oriented
program.

• They can use software development tools to analyze and optimize object-oriented programs and
to find and remove bugs.

• They are able to write object-oriented programs with a well-structured error handling concept.

Personal competencies:

• Students can act in the various roles of modern software development processes.

• They can independently obtain information on specific issues and use it in a targeted manner.

• They can work and communicate in groups.

• They can judge their own software development skills.

Course number: tba
Software Engineering +
Object-Oriented Programming
Study level: Bachelor /
Undergraduate

Prof. Dr. Burkhard Lehner
Language of instruction: English
ECTS Credits: 5

2

Teaching Content:

Software Engineering

• Software development processes and quality management

• Requirement engineering (incl. Use-Case Diagram, Activity Diagram)

• Software architecture and design (incl. Class Diagram, Sequence Diagram,
State Machine Diagram)

• Design patterns

• Software tests

• Working in teams (incl. issue tracker, version control, GitLab, Github Flow)

• Databases and data description languages

Object-Oriented Programming

• Objects and Classes

• Coop erating Objects

• Encapsulation

• Inheritance

• Polymorphism

• Abstract Classes

• Errors and Exceptions

