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Abstract— This paper presents a novel feature-based sam-
pling strategy for nonlinear Model Predictive Path Integral
(MPPI) control. In MPPI control, the optimal control is
calculated by solving a stochastic optimal control problem
online using the weighted inference of stochastic trajectories.
While the algorithm can be excellently parallelized the closed-
loop performance is dependent on the information quality of
the drawn samples. Because these samples are drawn using
a proposal density, its quality is crucial for the solver and
thus the controller performance. In classical MPPI control,
the explored state-space is strongly constrained by assumptions
that refer to the control value variance, which are necessary for
transforming the Hamilton-Jacobi-Bellman (HJB) equation into
a linear second-order partial differential equation. To achieve
excellent performance even with discontinuous cost-functions,
in this novel approach, knowledge-based features are used to
determine the proposal density and thus, the region of state-
space for exploration. This paper addresses the question of how
the performance of the MPPI algorithm can be improved using
a feature-based mixture of base densities. Further, the developed
algorithm is applied on an autonomous vessel that follows a
track and concurrently avoids collisions using an emergency
braking feature.

I. INTRODUCTION

Recent scientific and technical advances in the context of
control engineering and available computational power allow
nonlinear stochastic optimal control problems (OCP) to be
solved in real time by lately explored numerical methods. For
a restricted class of stochastic nonlinear control problems the
HJB equation can be transformed into a linear partial second-
order differential equation [1]. This class is characterized by
arbitrary but input affine dynamics, containing input noise,
and the cost function is only restricted to be quadratic
in the controls. Further, in [1] the solution derived for
both the optimal control and the optimal value function
can be expressed as a Feynman-Kac path integral. In the
path integral framework [2], the solution of the transformed
HJB is formulated as a conditional expectation value with
respect to the stochastic dynamical system. As a result, the
optimal control can be estimated using Monte Carlo sampling
[3]. While in general the resulting optimal control function
has an unknown structure, there are different approaches
for its representation. Beside offline learning parametrized
policy approaches [4],[5] nonlinear model predictive control
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(NMPC) has become the de-facto technological standard [6]-
[8]. Based on path integrals, a new type of NMPC algo-
rithm called MPPI is presented in [6]. Using a free energy
definition [9], the input affine requirement is completely
removed by [7]. Because MPPI is based on Monte Carlo
simulation, the information content of the thereby drawn
samples is highly dependent on the proposal density [10].
While in [11] a robust MPPI version and in [12] a covariance
steering approach are introduced, in this paper, a novel
feature-based MPPI extension is presented. In section II, the
basics of the MPPI approach are described. This is followed
by the derivation of a feature-based extension of the MPPI
algorithm in section III. In section IV, an application scenario
is defined containing the equations of motions of a vessel and
cost functions, which are combined as an optimal control
problem (OCP). Further, an emergency braking feature is
defined. In section V, a comparison of usual MPPI control
and its feature-based extension is given. Finally, in section
VI the conclusions of this paper and ideas for future work
are presented.

II. MPPI CONTROL

Recently, an NMPC algorithm based on path integrals was
presented by [7], calculating the optimal control inputs by
solving the time-discrete nonlinear stochastic OCP

min
UUU

E

{
φ(XXXT )+

T−1

∑
t=0

[C(XXX t)+uuuT
t RRRuuut ]|XXX0 = xxx0

}
(1a)

with XXX t+1 = FFF(XXX t ,vvvt), ∀t ∈ {0,1, ...,T −1}, (1b)

and vvvt = uuut + εεε t , εεε t ∼N (000,ΣΣΣ), RRR = λΣΣΣ
−1, λ ∈ R+

in real time, where FFF : Rn×Rm → Rn denotes the discrete
nonlinear system dynamics of the stochastic system state
XXX t ∈ Rn, and the actual system input denoted by vvvt ∈ Rm

that is given by the commanded system’s input uuut ∈Rm with
time discrete additive white Gaussian noise (AWGN) εεε t ∈Rm

with covariance matrix ΣΣΣ ∈ Rm×m. The costs are given by
the terminal costs denoted by φ(XXXT ), the instantaneous state
costs denoted by C(XXX t) and a quadratic input term with
weighting matrix RRR∈Rm×m. The cost function minimized in
(1a) evaluates the expected costs subject to the commanded
system inputs UUU = {uuu0,uuu1, ...,uuuT−1} ∈ Rm×T with regard
to an initial state xxx0. In this section, the basics of this
novel algorithm are described before it will be extended in
the next section. According to [7], the distribution function
of the uncontrolled system denoted by P with zero input
uuut = 000, t = 0,1, ...,T − 1 leads to the probability density
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where VVV = {vvv0,vvv1, ...,vvvT−1} denotes the sequence of ac-
tual input values. The distribution of the controlled system
denoted by Q with an open-loop sequence of manipulated
variables uuut = uuuP

t , t = 0,1, ...,T −1 leads to the PDF
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∏
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(3)
An initial state xxx0 and a realized sequence of input values VVV
can be uniquely assigned to a trajectory without stochas-
tic influence using (1b). Introducing the cumulated state-
dependent path costs S(VVV ) = φ(XXXT )+∑

T−1
t=0 C(XXX t) the value

function for the OCP (1) is given by

V (t,xxxt) =−λ logEP

{
e−

1
λ

S|XXX t = xxxt

}
, (4)

with respect to the uncontrolled dynamics [7]. To express
the value function with respect to Q the likelihood ratio p(V )

q(V )
must be added, which yields

V (t,xxxt) =−λ logEQ

{
p(VVV )

q(VVV )
e−

1
λ

S|XXX t = xxxt

}
. (5)

Applying Jensen’s inequality according to [7] yields

V (t,xxxt)≤−λEQ

{
log

p(VVV )

q(VVV )
e−

1
λ

S|XXX t = xxxt

}
, (6)

where the bound is tight with

q∗(VVV ) =
1
η

exp
(
− 1

λ
S(VVV )

)
p(VVV ), (7)

where η ∈R denotes a normalization factor. In [7] it is shown
that the associated optimal control values are given by

UUU∗ = argmin
UUU

DKL(Q∗||Q) (8a)

uuu∗t = EQ∗ [vvvt ] (8b)

where DKL denotes the Kullback-Leibler divergence and Q∗
denotes the abstract optimal distribution. According to [7],
the optimal input is given by

uuu∗t =
∫

ΩV

q(VVV )
q∗(VVV )

p(VVV )

p(VVV )

q(VVV )︸ ︷︷ ︸
ω(VVV )

vvvtdVVV (9a)

= EQ{ω(VVV )vvvt} (9b)

minimizing (1a), where ΩV denotes the image of the sample
space, and the importance weighting

ω(VVV ) =
1
η

exp

(
− 1

λ
S(VVV )+

T−1

∑
t=0

1
2

uuuT
t ΣΣΣ
−1uuut − vvvT

t ΣΣΣ
−1uuut

)
(10)

can be calculated using the PDFs (2), (3) and (7). Using
Monte Carlo simulation, (9a) can be estimated via the
iterative update law

uuui+1
t = uuui

t +
N

∑
n=1

ω(VVV n)(vvvn
t −uuui

t), (11)

where N samples are drawn from the system dynamics
(1b) with the commanded control input sequence UUU =
{uuu0,uuu1, ...,uuuT−1}. The iterative procedure is used to estimate
the optimal commanded control input, and to improve the
required importance sample distribution Q simultaneously.

Algorithm 1 Optimize Control Sequence (OCS) acc. to [7]
Input: FFF : Transition model;

K: Number of samples;
T : Number of timesteps;
UUU I : Initial control sequence;
xxx0: Recent state estimate;
Σ,φ ,C,λ : Control hyper-parameters;

Output: UUUO: Optimized control sequence
S: Average costs;

1: for k ∈ {0,1, ...,K−1} do
2: xxxk,0← xxx0;
3: Sample {εεεk

0,εεε
k
1, ...,εεε

k
T−1};

4: S(k)← 0;
5: for t ∈ 1,2, ...,T do
6: xxxk,t ← FFF(xxxk,t−1,uuuI

t−1 + εεεk
t−1);

7: S(k)+ =C(xxxk,t)+λuuuI⊤
t−1Σ−1εεεk

t−1;
8: end for
9: S(k)+ = φ(xxxk,T );

10: end for
11: β ←mink[S(k)];
12: η ← ∑

K−1
k=0 exp(− 1

λ
S(k)−β );

13: for k← 0 to K−1 do
14: ω(k)← 1

η
exp(− 1

λ
S(k)−β );

15: end for
16: for t ∈ {0,1, ...,T −1} do
17: uuuO

t ← uuuI
t +∑

K−1
k=0 ω(k)εεεk

t ;
18: end for
19: S← 1

K ∑
K−1
k=0 S(k);

20: return UUUO = {uuuO
0 ,uuu

O
1 , ...,uuu

O
T−1} and S

III. EXTENSION TO FEATURE BASED PROPOSAL
DENSITY

A. Exploration Problem of Classical MPPI Control

To improve the sampling efficiency, both, the value func-
tion (5) and the optimal control sequence (9b) can be calcu-
lated by sampling trajectories under the probability measure
Q with the proposal PDF (3). Due to the restrictive assump-
tion RRR = λΣΣΣ

−1, the proposal PDF is only parametrized by
a sequence of inputs UUUP = {uuuP

0 ,uuu
P
1 , ...,uuu

P
T−1}. The sampling

efficiency is dependent on the quality of the proposal density
[10]. In [7] the recent estimate UUU t of the optimal control
sequence UUU∗ is used to determine the proposal PDF for the
next sampling iteration. The objective function (1a) is not



Fig. 1. Explored state-space using stochastic trajectories with mean UUU0

(red) and mean UUUF (blue) for emergency braking feature

necessarily convex. Using an infinite number of samples the
MPPI algorithm is a global minimizer. However, due to a
finite number of drawable samples, the explored state-space
is concentrated around the last approximation. In order not
to remain in a local minimum, the explored state-space must
be enlarged.

B. Feature-Based Extension of the Search Space

An enlargement of the explored state-space is possible by
introducing an additional feature-based proposal density to
draw a part of the samples from. Therefore, a feature is
implicitly defined by solving the artificial OCP

UUUF = argmin
UUU

EQ

{
φF(XXXT )+

T−1

∑
t=0

[CF(XXX t)+uuuT
t RRRuuut ]

}
(12a)

with XXX t+1 = FFF(XXX t ,vvvt) and vvvt ∼N (uuut ,ΣΣΣ), RRR = λΣΣΣ
−1,
(12b)

where φF : Rn→ R denotes the terminal costs of a feature
and CF :Rn→R denotes the instantaneous costs of a feature.
Thus, the feature-based proposal density is given by

qF(VVV )=
T−1

∏
t=0

1

((2π)m|ΣΣΣ|) 1
2

exp
(
−1

2
(vvvt −uuuF

t )
T

ΣΣΣ
−1(vvvt −uuuF

t )

)
,

(13)
parametrized by a sequence of inputs UUUF =
{uuuF

0 ,uuu
F
1 , ...,uuu

F
T−1}. Analogous to the previous section,

the stochastic OCP (12) can be solved by using the MPPI
algorithm.

C. Resulting Feature-Based MPPI Algorithm

The resulting feature-based MPPI algorithm is presented in
algorithm 2. First, the optimal control sequence is optimized
using algorithm 1 and the predicted costs are evaluated.
Then, all feature control sequences are improved and their
performances regarding the main cost function are evaluated.
The best control sequence is chosen to be the main control
sequence. Then the first element of the control sequence is
applied. Subsequently, the sequence is shifted and the last
element is initialized. Note: In the implementation, lines 4
and 5 can be combined to reduce the computational effort.

Algorithm 2 Feature-Based MPPI
Input: FFF : Transition model;

K: Number of samples;
T : Number of timesteps;
UUU0: Initial control sequence;
xxx0: Recent state estimate;
Σ,φ ,C,λ : Control hyper-parameters;
I: Number of features with feature index i = {1,2, ..., I};
UUU i: Initial control sequence of ith feature;
φi,Ci: State dependent costs of ith feature;
Ki: Number of ith features samples;

1: while Controller is active do
2: [UUU0,S0]← OCS(K,T,UUU0,xxx0,Σ,φ ,C,λ )
3: for i ∈ {1,2, ..., I} do
4: [UUU i,−]← OCS(Ki,T,UUU i,xxx0,Σ,φi,Ci,λ )
5: [−,Si]← OCS(Ki,T,UUU i,xxx0,Σ,φ ,C,λ )
6: end for
7: i∗← argmin

i
Si, with i = 0,1, .., I

8: UUU0←UUU i∗

9: SendToActuator
(
uuu0

0
)
;

10: for t ∈ {1,2, ...,T −1} do
11: uuu0

t−1← uuu0
t

12: end for
13: uuu0

T−1← Initialize
(
uuu0

T−1
)

14: end while

IV. APPLICATION SCENARIO: EMERGENCY BRAKE

In this section, the feature-based MPPI control algorithm
is applied in an emergency braking scenario for a vessel. In
the scenario being discussed, the vessel is traveling at full
speed along a path where an obstacle appears at a certain
point. Therefore, the vessel has to autonomously perform
a so-called last-minute maneuver to avoid a collision. To
provide an overview, first the state and dynamics of the
fully actuated research vessel Solgenia are presented. Then, a
standard MPPI controller is parameterized, which causes the
vessel to follow a predefined path. This is then extended to a
feature-based MPPI controller by introducing an emergency
brake feature.

A. Dynamics of the Vessel

In [13] a detailed description of the dynamics of the
research vessel Solgenia including identification of the model
parameters and the calculation of the actuator thrusts is
given. Nevertheless, a short description of the modeling is
given in the following since it is an elementary component
of the scenario. According to [14], the state vector is a
combination of the 2D pose ηηη = (x y ψ)⊤ and the velocity
vector ννν = (u v r)⊤ in body-fixed coordinates, shown in Fig.
2. This model was extended in [15] to also consider the
dynamics of the actuators. Thus, the actual actuator states
aaa = (nAT α nBT)

⊤, where the speed of the azimuth thruster
(AT) is denoted by nAT, the orientation of the AT is denoted
by α and nBT denotes the speed of the bow thruster (BT), and



Fig. 2. Local and body-fixed coordinate systems, geometrical parameters
and thruster forces

the desired actuator states www = (nd,AT αd nd,BT)
⊤ denoting

the desired variables of aaa get part in the system state

xxx = (ηηη⊤ ννν
⊤ aaa⊤ www⊤)⊤ ∈ R12. (14)

The whole dynamic model of the vessel is given by

ẇww = uuu (15a)
ȧaa = ddd(aaa,www) (15b)

MMMν̇νν +CCCRB(ννν)ννν +NNN(ννν)ννν = τττc(aaa,ννν)+ τττd (15c)
η̇ηη = JJJ(ψ)ννν , (15d)

where in (15a) the desired variable vector www includes the
integral action uuu. In (15b) the actuators’ dynamics are taken
into account by ddd : R3×R3 → R3. The time derivative of
the body-fixed velocity ν̇νν is implicitly described in (15c)
as a function of the body-fixed velocity ννν , the matrices MMM,
CCCRB(ννν) and NNN(ννν) including the system parameters, the input
vector τττc and disturbance vector τττd . The kinematic equation
(15d) describes the transformation of the body-fixed velocity
into local coordinates as a function of the rotation matrix
JJJ(ψ). The influence of unmodeled effects and environmental
disturbances are represented by the disturbance vector τττd .
The controlled force vector

τττc(aaa,ννν) =

 FAT(nAT,ννν)cosα

FAT(nAT,ννν)sinα +FBT(nBT,ννν)
FBT(nBT,ννν)LBT−LATFAT(nAT,ννν)sinα


(16)

depends on the geometric parameters LBT, LAT and α and
the thrusts FAT and FBT, shown in Fig. 2. The thrust FAT is
generated by the AT, FBT denotes the thrust generated by the
BT. In [13] it is shown how the thrusts FAT and FBT can be
calculated using nonlinear dependencies of various constants,
the body-fixed velocity vector ννν and the actuator state vector
aaa. For more detailed information about the dynamics, the
reader is referred to [13] and [15].

B. Inequality Constraints

Due to the maximum speed of the actuators two inequality
constraints

hhh(xxx,uuu) =
(
|nAT|− |nAT,max|
|nBT|− |nBT,max|

)
≤ 000, ∀t ∈ [t0, t0+T ], (17)

are defined. By considering the actuator dynamics (15b) in
the model, no further constraints are required. In the next
part, the cost function is presented for the given scenario.

C. Cost Function

The instantaneous state-dependent cost function C(xxx) is
significantly responsible for the behavior of the controlled
system, since it is used to evaluate the predicted stochastic
trajectories. In the present application example, the quality
of a trajectory is evaluated based on three parts

C(xxx) =Cpos(ηηη)+Cvel(ννν)+Ccol(ηηη), (18)

where Cpos(ηηη) denotes the position dependent costs used to
stay on the parcours shown in Fig. 3, Cvel(ννν) denotes the
part of the cost function that is dependent on the body-
fixed velocity ννν and a collision is penalized by Ccol(ηηη).
The vessel should move on a predefined track shown in Fig.
3. Moreover, the vessel’s distance to the boundaries of the
track should be maximized. To create a function with these
described properties, first the indicator function

ζ (x,y) =
{

0 if {x,y} ∈ ηηη track
1 if {x,y} ∈ ηηηoutside

(19)

is defined, where ηηη track is the subset of the state-space where
the vessel is on the track and ηηηoutside is a disjoint subset.
Then, this function is smoothed using a moving average filter
with a square filter with side length dfilt. Finally the smoothed
function is normalized so that max[Cpos(ηηη)] = cpos,max. This
yields:

Cpos(ηηη) = c
N/2

∑
kx=−N/2

N/2

∑
ky=−N/2

ζ (x+ kx∆,y+ ky∆), (20)

where c denotes a normalization factor, ∆ denotes the sample
widths and N = ⌊dfilt/∆⌋. As a further quality criterion, the
difference between the body-fixed velocity component u and
a reference velocity uref with

Cvel(ννν) = cu(uref−u)2 (21)

is penalized quadratically. By this choice of the velocity
dependent part of the cost function, the velocity components
v and r have no influence on the cost function. Thus, a
drifting behavior of the vessel is neither penalized nor made
desirable. To avoid a collision, the indicator function

Ccol(ηηη) =

{
ccol if ηηη ∈ ηηηC
0 else (22)

is defined, where ηηηC denotes the region of the state-space
where a collision of the vessel would occur and ccol ∈ R+

denotes a penalizing parameter.



TABLE I
CONTROLLER PARAMETERS

Parameter MPPI feature-based MPPI
K 750 500
T 41 41
ΣΣΣ diag(114.56,2.39,301.7) diag(114.56,2.39,301.7)
λ 1 1

C(xxx) Eq. (23) Eq. (23)
φ(xxx) 0 0
K1 - 250

C1(xxx) - Eq. (28)
φ1(xxx) - Eq. (28)

D. Resulting Problem Formulation

To minimize the cumulated costs (18) subject to the
given dynamics (15a)-(15d) and the inequality constraints
(17) using MPPI control the OCP has to be formulated in
the assumed structure (1a)-(1c). Consequently, the inequality
constraints must be considered in the cost function with

CMPPI(xxx) =C(xxx)+ cineq max[000,hhh(aaa)], (23)

where cineq ∈ R denotes a coefficient of the penalty term.
In addition, the end cost function φ(xxx) must be determined.
Because this function is not needed in the given scenario, it
is defined as

φ(xxx) = 0. (24)

In MPPI control, a discrete-time system dynamics with input
noise is assumed in (1b). Therefore, the time continuous
system dynamics given in (15a)-(15d) are discretized using
the explicit fourth order Runge-Kutta method with a step size
h. Consequently, the time discrete vessel dynamics is given
by

XXX t+1 = FFFv(XXX t ,uuut). (25)

Finally, the assumption that the input of the system is
disturbed with time discrete AWGN, yields

uuut ∼N (uuudes,t ,ΣΣΣ), (26)

where uuuttt denotes the actual and uuudes,t the desired system
input at time instance t. The covariance matrix of the AWGN
is denoted by ΣΣΣ. Using these assumptions, the resulting OCP
is given by

min
UUUdes

E

{
T−1

∑
t=0

[CMPPI(XXX t)+uuuT
des,tRRRuuudes,t ]|XXX0 = xxx0

}
(27a)

with XXX t+1 = FFFv(XXX t ,uuut), ∀t ∈ {0,1, ...,T −1}, (27b)

and uuut ∼N (uuudes,t ,ΣΣΣ), RRR = λΣΣΣ
−1, (27c)

where the sequence of desired inputs is denoted by UUUdes =
{uuudes,0,uuudes,1, ...,uuudes,T−1}. In the next part, the usual MPPI
approach is extended to the feature based MPPI to improve
the system’s behavior.

E. Feature definition

The selection of the feature can be done by inverse rein-
forcement learning according to [16] or by the definition of a
linguistic quality criterion, which is subsequently formulated

Fig. 3. Track with inside diameter di, outside diameter do, length of the
straight s and origin of the local frame Oη

mathematically. It is important to note that only well-chosen
features lead to an improvement of the system’s behavior. For
the given scenario, the following linguistic quality criterion
is defined: a reduction in speed can mitigate or even prevent
a collision with an obstacle. For this purpose, an emergency
brake feature is defined by choosing

C1(xxx) = φ1(xxx) = ννν
⊤QQQννν , QQQ = diag(cu,cv,cr), (28)

where cu,cv,cr ∈R+ denote the coefficients of the quadratic
components of the body-fixed velocity. Consequently, this
feature leads to the exploration of the region of the state-
space, that leads to a decreasing velocity.

V. SIMULATION RESULTS

The MPPI controller (Sec. II) and the feature based
MPPI controller (Sec. III) are embedded in a simulation
environment to compare their performances controlling the
vessel model (Sec. IV). The used controller parameters are
listed in Tab. I. Note, for an objective comparison, the
parameters are chosen to be equal. The covariance Σ is
determined for minimal cumulated costs results using Monte-
Carlo simulations. In the feature-based MPPI, a part of the
trajectories drawn is used to evaluate the feature. Thus, both
controllers have almost the same computational effort. The
step size for discretizing the system dynamics is chosen as
h = 360 ms. The parameters for the position dependent costs
(20) are given by di = 40 m, da = 60 m, s= 30 m, dfilt = 9 m,

Fig. 4. Resulting trajectories of simulation scenarios and 2D pose of the
vessel at equidistant time instances. The red shaded area corresponds to ηηηC .



∆= 0.5 m and cpos,max = 100 m. The reference surge velocity,
used in (21) is given by uref = 1 m/s and the collision space
is given by ηηηC ∈ {R3|(x < 0∧ y > 0)∨ηηηoutside} with costs
ccol = 10000. A violation of the inequality constraint (23)
is penalized by cineq = 10000. The velocity cost coefficient
is given by cu = 250. The feature cost parameters (28) are
determined as cu = 5000, cv = 100, cr = 100. The total time
of the simulation is set to 135 s. Further, the initial 2D pose
of the vessel is set to ηηη0 = (0m − 25m 0rad)⊤ while
the other states with ννν0 = aaa0 = www0 = 000 are set to zero. The
resulting trajectories and the vessel’s orientation at several
time instances are shown in Fig. 4. The time courses of the
minimal path costs β are plotted over time in Fig. 5. Both, the
conventional MPPI controlled system and the feature-based
MPPI controlled system show almost the same behavior for
t ≤ 103 s in the absence of an obstacle. At t = 0 s the costs
were caused by the initial body-fixed velocity ννν0 = 000. Due
to fewer predicted stochastic trajectories of the feature-based
MPPI with regard to the main costs (23), the surge velocity
is slightly overshooting at the end of the acceleration phase.
After that, both systems behave identically, and the position
distance doesn’t increase any further. Starting at t = 98 s
some of the predicted trajectories would collide with the
obstacle within the prediction horizon. The standard MPPI
controller only decelerates briefly and then accelerates for
t > 103 s. This effect results from the fact that due to the
small explored state-space using conventional MPPI control
all predicted trajectories cause a collision for t > 103 s.
Consequently, predicted trajectories with surge velocity close
to uref cause lower costs. In contrast, the feature-based MPPI
controlled system explores more important areas of the state-
space shown in Fig. 1. Thus, it can also react excellently for
t > 103 s and brake in time to avoid a collision.

VI. CONCLUSION AND FUTURE WORK

In this paper, an extension of the MPPI algorithm [7] is
presented improving the sample efficiency by adapting the
proposal density to defined features. This is the first possi-
bility to incorporate information about a scenario additive to
the usual cost function into the controller. The conventional
MPPI and the presented feature-based MPPI are compared
in a collision avoidance scenario. Therefore, a stochastic
nonlinear OCP for enableling a vessel to follow a track
and avoid collisions is presented and subsequently solved
with both approaches. The performances of the algorithms
are evaluated using data out of a simulation environment.
In the simulation, while the standard MPPI would collide
with an obstacle, the feature-based MPPI can prevent the
collision although the same number of trajectories were
drawn in both cases. Concerning other NMPC approaches,
the MPPI control algorithm is characterized by a very good
parallelizability drawing the samples. This property is not
affected by the presented feature-based extension. In future
work, it would be interesting to evaluate the scenario in a
real-world experiment. In addition, an evaluation of how the
presented feature-based approach can be used in other NMPC
algorithms could be scientifically valuable.

Fig. 5. Comparison of minimal path costs plotted over time. Note the
logarithmic representation of the minimal pathcost.
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