

gleichförmige geradlinige Bewegung		gleichmäßig beschleunigte Bewegung			
$s = v \cdot t + s_0$ $v = \frac{s}{t}$	s Weg v Geschwindigkeit t Zeit s ₀ Anfangsweg bei t ₀ = 0	$s = \frac{a}{2} \cdot t^2 + v_0 \cdot t + s_0$ $v = a \cdot t + v_0$	a Beschleunigung v ₀ Anfangsgeschwindigkeit		
gleichförmige Kreisbewegung (Rotation)		gleichmäßig beschleunigte Kreisbewegung (Rotation)			
$v = \frac{2\pi \cdot r}{T} = 2\pi \cdot r \cdot n$ $v = \omega \cdot r$ $\varphi = \omega \cdot t + \varphi_0$ $\omega = \frac{2\pi}{T} = 2\pi \cdot n$	r Radius T Umlaufzeit n Drehzahl φ Winkel Winkelgeschwindigkeit t Zeit φ ₀ Anfangswinkel	$\phi = \frac{\alpha}{2} \cdot t^2 + \omega_0 \cdot t + \phi_0$ $\omega = \alpha \cdot t + \omega_0$	α Winkelbeschleunigung ω_0 Anfangs- winkelgeschwindigkeit		

Kräfte in der Mech	anik						
Gewichtskraft F _G	$F_G = m \cdot g$	Radialkraft F _r (Zentripetalkraft	$F_r = m \cdot \frac{v^2}{r}$	m μ	Masse Reibungszahl	g F _N	Fallbeschleunigung Normalkraft
Reibungskraft F _R	$F_r = \mu \cdot F_N$	oder Zentralkraft)	$F_r = m \cdot \omega^2 \cdot r$	r	Kreisbahnradius	D	Federkonstante
Federspannkraft F _s	$F_s = D \cdot s$	Gravitationskraft F $F = G \cdot \frac{m_1 \cdot m_2}{r^2}$ ω		Dichte , m ₂ Massen Bahngeschwindigk	V s eit	Volumen Dehnung der Feder	
Auftriebskraft F _A	$F_A = \rho \cdot V \cdot g$	Gravitationskraft F	$F = G \cdot \frac{1}{r^2}$	ω G r	elpunkte		

Mechanische Arbeit		
mechanische Arbeit W	$\vec{F} = \text{konstant:}$ $W = F \cdot s$ $W = F \cdot s \cdot \cos \alpha$ $\vec{F} = \vec{F} \cdot \vec{F} \cdot \vec{S} = 0$ $\vec{F} = \vec{F} \cdot \vec{S} \cdot \vec{S} = 0$ $\vec{F} = \vec{S} \cdot \vec{S} \cdot \vec{S} = 0$	F Kraft s Weg h Höhe
Hubarbeit	$W = F_G \cdot h$	F _G Gewichtskraft
Beschleunigungsarbeit	$W = F_B \cdot s$	F _B beschleunigende Kraft
Reibungsarbeit	$W = F_R \cdot s$	F _R Reibungskraft
Federspannarbeit	$W = \frac{1}{2}F_{E} \cdot s = \frac{1}{2}D \cdot s^{2}$	F _E Endkraft (maximale Kraft) D Federkonstante
Arbeit im Gravitationsfeld	$W = G \cdot m_1 \cdot m_2 \cdot \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$	G Gravitationskonstante m ₁ , m ₂ Massen r ₁ , r ₂ Abstand vom Massenmittelpunkt
Volumenänderungsarbeit W	$W = -p \cdot \Delta V$ für $p = konstant$	p Druck ΔV Volumenänderung

Mechanische Energie						
potentielle Energie E _{pot} (Lageenergie)	Körper auf der Erde: $E_{pot} = F_G \cdot h$	gespannte Feder: $E_{pot} = \frac{1}{2}F_{E} \cdot s$	F _G h F _E s	Gewichtskraft Höhe Endkraft (maximale Kraft) Dehnung der Feder		
kinetische Energie E _{kin} (Bewegungsenergie)	Translation: $E_{kin} = \frac{1}{2} m \cdot v^2$	Rotation: $E_{kin} = \frac{1}{2} J \cdot \omega^2$	m v J ω	Masse Geschwindigkeit Trägheitsmoment Winkelgeschwindigkeit		

Mechanische Leis	tung und Wirkungsgrad			
mechanische	$P = \frac{W}{4}$		W verricht	ete Arbrit
Leistung P	t		t Zeit	
	für	für	F Kraft	
	v = konst. und $F = konst.$:	$M = konst.$ und $\omega = konst.$:	s Weg	
	$P = \frac{F \cdot s}{t} = F \cdot v$	$P = M \cdot \omega$	v Geschv	vindigkeit
	$P = \frac{1}{t} = P \cdot V$		M Drehmo	oment
			ω Winkel	geschwindigkeit
Wirkungsgrad η			E_ab, W_ab, P_ab	abgegebene (nutzbare)
-	E _{ab}	W_{ab} P_{ab}		Energie, Arbeit, Leistung
	$ \eta = \frac{E_{ab}}{E_{zu}} \qquad \eta = \frac{P_{ab}}{P_{zu}} $	$=\frac{W_{ab}}{W_{zu}} \qquad \qquad \eta = \frac{P_{ab}}{P_{zu}}$	E_ab, W_ab, P_ab	zugeführte (aufgewendete)
				Energie, Arbeit, Leistung
Gesamt-	$\eta_G = \eta_1 \cdot \eta_2 \cdot \cdot \eta_n$		η ₁ , η ₂ · Τ	- Feilwirkungsgrad
wirkungsgrad η _G	יוט = יוז יוצ יוח		111,112	ommikangograd

Dichte und Druck			
Dichte ρ	$\rho = \frac{m}{V}$	m	Masse
	V	V	Volumen
Druck p	$p = \frac{F}{A}$	F	Kraft
·	$P = \frac{A}{A}$	Α	Fläche
Schweredruck p	$p = \frac{F_G}{A} = \frac{m \cdot g}{A}$ $p = \rho \cdot h \cdot g$	ρ	Dichte der Flüssigkeit oder des Gases
	E V	h	Höhe
Auftriebskraft F _A	$F_A = \rho \cdot V \cdot g$	g	Fallbeschleunigung
hydraulische und pneumatische	$\frac{F_1}{F_1} = \frac{F_2}{F_2}$		
Anlagen	$\frac{A_1}{A_1} - \frac{A_2}{A_2}$	F_1, F_2	Kräfte an den Kolben
		A_1, A_2	Fläche der Kolben

Strömende Flüssigkeiten und Ga	se		
Kontinuitätsgleichung	$A_1 \cdot v_1 = A_2 \cdot v_2$ für $\frac{m}{t}$ = konst.	A v m t	Fläche Geschwindigkeit der Strömung Masse Zeit
bernoullische Gleichung	$p_{S} + p + p_{St} = kons tan t$ $p_{S} + \rho \cdot g \cdot h + \frac{1}{2} \rho \cdot v^{2} = kons tan t$	ps p pst ρ g h	statischer Druck Schweredruck Staudruck Dichte Fallbeschleunigung Höhe

Mechanische Schwingungen und Wellen							
Periodendauer T	$T = \frac{t}{-}$	$T = \frac{1}{4}$					
(Schwingungsdauer)	n	<u>†</u>	_				
Frequenz f	$f = \frac{n}{t}$	$f = \frac{1}{T}$	t n	Zeit Anzahl der Schwingungen			
Kreisfrequenz ω	$\omega = 2$	2π · f					
Periodendauer T	für kleine Auslenkw	inkel:					
Fadamandal	$T = 2\pi$		1	Länge des Pendels			
Fadenpendel	$T = 2\pi \sqrt{\frac{I}{g}}$		g	Fallbeschleunigung			
	m		m	Masse des Körpers			
Federschwingers	$T = 2\pi \sqrt{\frac{m}{D}}$		D	Federkonstante			
			J	Trägheitsmoment			
physikalisches Pendel	$T = 2\pi \sqrt{\frac{J}{m \cdot g \cdot a}}$		а	Abstand des Aufhängungs-			
prijamanasilos i olidoi				punktes zum Massenmittelpunkt			
Ausbreitungsgeschwindigkeit c	C =	λ · f	λ	Wellenlänge			
von Wellen	0 -			· · · · · · · · · · · · · · · · · · ·			

Grundlagen der Elektrizitätslehre				
elektrische Ladung Q	$Q = N \cdot e$ $Q = I \cdot t$	$e = 1,602177 \cdot 10^{-19} C$ für $I = konstant$	N e	Anzahl der Elektronen Elementarladung
coulombsches Gesetz	$F = \frac{1}{4\pi \cdot \varepsilon_0 \cdot \varepsilon_r}$ $\varepsilon_0 = 8,854188$	$\cdot \frac{Q_1 \cdot Q_2}{r^2}$ $\cdot 10^{-12} A \cdot s \cdot V^{-1} \cdot m^{-1}$	F ε ₀ ε _r r	Kraft elektrische Feldkonstante Dielektrizitätszahl Abstand der Punktladungen Q ₁ und Q ₂

Gleichstromkreis				
elektrische Spannung	$U = \frac{W}{Q}$		Q	elektrische Ladung
elektrische Stromstärke I	$I = \frac{Q}{t}$		t W	Zeit mechanische Arbeit
elektrischer Widerstand R (ohmsches Gesetz)	$R = \frac{U}{I}$			
elektrische Leistung P	$P = U \cdot I$			
elektrische Arbeit W	$W = P \cdot t$	$W = U \cdot I \cdot t$		
elektrische Energie E	$E_{el} = P \cdot t$	$E_{el} = U \cdot I \cdot t$	ρ	spezifischer elektrischer
Widerstandsgesetz				Widerstand
	$R = \frac{\rho \cdot I}{\Delta}$		1	Länge des Leiters
			Α	Querschnittsfläche des Leiters

Grundlagen der Wärmelehre				
Grundgleichung der Wärmelehre	$Q = c \cdot m \cdot \Delta \vartheta$		Q c	Wärme spezifische Wärmekapazität
Aggregatzustandsänderung			m	Masse des Körpers
Schmelzwärme Qs (= Erstarrungswärme)	$Q_S = q_s \cdot m$		Δθ	Temperaturänderung
Verdampfungswärme Q (= Kondensationswärme)	$Q_V = q_v \cdot m$			
Volumen- und Längenänderung von k	(örpern		lo	Länge vor der Temperatur
Längenänderung fester Körper ∆l	$\Delta \mathbf{I} = \alpha \cdot \mathbf{I}_0 \cdot \Delta 9$		10	änderung
Volumenänderung fester und flüssiger Körper ΔV	$\Delta V = \gamma \cdot V_0 \cdot \Delta 9$ $\gamma = 3 \cdot \alpha \qquad f$	ür feste Körper	γ	Längenausdehnungskoeffizient Volumenausdehnungs- koeffizient
Volumenänderung realer Gas (Gesetz von Gay-Lussac)	$\Delta V = \gamma \cdot V_0 \cdot \Delta \vartheta f$ $V = V_0 (1 + \gamma \cdot \Delta \vartheta)$	ür p = konstant	V ₀	Volumen vor der Temperatur- änderung
Zustandsgleichungen des idealen Ga	ses		p	Druck
allgemeine Zustandsgleichung	$\frac{p_1 \cdot V_1}{T_1} = \frac{p_2 \cdot V_2}{T_2}$	für m = konstant	V T	Volumen Temperatur
isobare Zustandsänderung	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$	für p = konstant		
isochore Zustandsänderung	$\frac{p_1}{T_1} = \frac{p_2}{T_2}$	für V = konstant		
isotherme Zustandsänderung	$p_1 \cdot V_1 = p_2 \cdot V_2$	für T = konstant		