Studienkolleg (STK)

Anforderungen MATHEMATIK

1. Beherrschung der Grundlagen der Mengenlehre

Nutzung verschiedener Schreibweisen für Mengen

Aufzählende Schreibweise: M = {a, b, c, ...}

Beschreibende Schreibweise: M = { $x \in \mathbb{Q} \mid -3 \le x < 3$ }

auch [a; b] = $\{x \in \mathbb{R} \mid a \le x \le b\}$ bzw.]a; b[= $\{x \in \mathbb{R} \mid a < x < b\}$ und halboffene Intervalle

Kenntnis und Anwendung der Begriffe der Mengenrelation und Mengenoperation

Mengenrelation: Mengengleichheit $M_1 = M_2$

Teilmenge $M_1 \subseteq M_2$ bzw. echte Teilmenge $M_1 \subseteq M_2$

Mengenoperationen: Vereinigung $M_1 \cup M_2$; Durchschnitt $M_1 \cap M_2$; Differenz $M_1 \setminus M_2$

Potenzmenge $P(M) = \{ T \mid T \subseteq M \}$

2. Rechnen im Bereich der reellen Zahlen

Rechenoperationen unter Verwendung von Variablen

Addition und Subtraktion von Summen; Auflösen und Setzen von Klammern

$$+(a+b-c)=a+b-c$$
 $-(a+b-c)=-a-b+c$

Multiplikation und Division von Summen; Ausklammern eines gemeinsamen Faktors

Anwenden von binomischen Formeln

$$(a + b)^2 = a^2 + 2ab + b^2$$
 $(a - b)^2 = a^2 - 2ab + b^2$

 $(a + b)(a - b) = a^2 - b^2$

Umformen von Produkt in Summe und umgekehrt

Rechnen mit Brüchen (Quotienten)

Erweitern und Kürzen;

Addition (Subtraktion), Multiplikation und Division von Quotienten (auch Mehrfachbrüche)

- Berechnen von Potenzausdrücken $\underbrace{a^n = a \cdot a \cdot ... \cdot a}_{n \text{ Faktoren a}} \quad a \in_{\mathbb{R}} \setminus \{0\}, \ \mathbf{n} \in \mathbb{N}$

Anwenden der Potenzgesetze

– Berechnen von Wurzelausdrücken $\sqrt[n]{a} = b$ \Leftrightarrow $b^n = a$ $a \in \mathbb{R}$, $a \ge 0$, \bigcap ∈ $\mathbb{N} \setminus \{0, 1\}$

Anwenden der Wurzelgesetze;

Umformen von Potenzen mit gebrochenen Exponenten $a^{\frac{m}{n}} = \sqrt[n]{a^m}$ (a>0; m, n ∈ Z; n>0)

– Berechnung von logarithmischen Ausdrücken $\log_a b = c$ ⇔ $a^c = b$ $a,b \in \mathbb{R}$, a > 0, $a \ne 1$, b > 0

Anwenden der Logarithmengesetze

Test für Ausländische Studienbewerber, Konstanz

Studienkolleg (STK)

3. Lösen von Gleichungen und Ungleichungen

- Äquivalentes Umformen und Lösen von linearen Gleichungen und Ungleichungen
 Bestimmung der Lösungsmenge einer Ungleichung in Abhängigkeit des Grundbereichs der Variablen;
 Lösen von Gleichungen und Ungleichungen mit Beträgen
- Lösen linearer Gleichungssysteme mit zwei Variablen
 Anwenden von Lösungsverfahren, z.B. Additions-, Einsetzungs- oder Gleichsetzungsverfahren
- Lösen quadratischer Gleichungen
 Anwenden der Lösungsformel für quadratische Gleichungen
 (für die allgemeine Form ax²+bx+c=0 oder Normalform x²+px+q=0)
- Lösen von Wurzelgleichungen, Exponentialgleichungen, Logarithmengleichungen und goniometrischen Gleichungen
- Überprüfung der Lösung durch Einsetzen in die Ausgangsgleichung (Probe)

4. Lösen praktischer Aufgaben unter Verwendung von Proportionen; Prozentrechnung

Aufstellen und Lösen von Verhältnisgleichungen bei direkten Proportionalität

$$\frac{a_i}{a_j} = \frac{b_i}{b_j}$$
 oder $\frac{a_i}{b_i} = \frac{a_j}{b_j}$

Aufstellen und Lösen von Verhältnisgleichungen bei indirekter (umgekehrter) Proportionalität

$$\frac{\mathbf{a}_{i}}{\mathbf{a}_{j}} = \frac{\mathbf{b}_{j}}{\mathbf{b}_{i}} \qquad \mathbf{a}_{i} \cdot \mathbf{b}_{i} = \mathbf{a}_{j} \cdot \mathbf{b}_{j}$$
oder

 Lösen von Aufgaben der Prozentrechnung (Berechnung des Grundwertes, Prozentwertes oder des Prozentsatzes);

Anwendung der Aussagen "Steigerung (Senkung) um x Prozent" oder "Steigerung (Senkung) *auf* x Prozent"

5. Kenntnisse der Elementargeometrie

- Kenntnis und Anwenden des Satzes des Pythagoras $a^2 + b^2 = c^2$
- Berechnung des Umfangesund des Flächeninhaltes von Dreiecken, Vierecken und des Kreises
- Berechnung des Oberflächeninhaltes und des Rauminhaltes eines Prismas, Kreiszylinders, Pyramide,
 Kreiskegels und einer Kugel

6. Eigenschaften elementarer Funktionen

– Anwenden der Kenntnisse über reelle Funktionen (x, y $\in \mathbb{R}$)

lineare Funktionen
$$y = mx + n$$
;

Potenzfunktionen
$$y = ax^n + b \ (n \in \mathbb{Z}) \ und \ v = ax^{\frac{p}{q}} + b \ (p, q \in \mathbb{Z}; q>0);$$

Studienkolleg (STK)

Test für Ausländische Studienbewerber, Konstanz

Exponentialfunktion en $y=a^x+b$; Logarithmusfunktionen $y=log_a x$; trigonometrische Funktion $y=\sin x$, $y=\cos x$, $y=\tan x$, $y=\cot x$

- Bestimmen des Definitions- und Wertebereichs einer Funktion
- Skizzieren des graphischen Verlaufs einer Funktion; Einfluss von Koeffizienten a, b ,m ,n auf die Normalform einer Funktion
- Bestimmung der Umkehrfunktion
- Periodizität und Symmetrie einer Funktion

7. Differentialrechnung

- Kenntnis und Anwendung der Ableitungsregeln zur Ableitung elementarer Funktionen (Kostanten-, Potenz-, Faktor-, Summen-, Produkt-, Quotienten- und Kettenregel);
- Bestimmen lokaler Maxima bzw. Minima einer rationalen Funktion f(x);
- Bestimmen von Nullstellen und Schnittpunkten mit der y-Achse einer rationalen Funktion f(x);
- Bestimmen des Verhaltens im Unendlichen einer rationalen Funktion f(x); Bestimmen der Gleichung der Asymptote einer gebrochenrationalen Funktion f(x);
- Untersuchung von Stetigkeit und Unstetigkeit einer rationalen Funktion f(x); Bestimmen der Polstelle einer gebrochenrationalen Funktion f(x);
- Skizzieren des Graph einer Funktion f(x).

8. Integralrechnung

Kenntnis und Anwendung der Regeln für das Ermitteln von unbestimmten Integralen

$$\begin{split} &\text{Potenzregel} &&\int x^n dx = \frac{1}{n+1} \cdot x^{n+1} + C \;, \\ &\text{Faktorregel} &&\int a \cdot f(x) dx = a \cdot \int f(x) dx \;, \\ &\text{Summenregel} &&\int \big(f_1(x) + f_2(x)\big) dx = \int f_1(x) dx + \int f_2(x) dx \;. \end{split}$$

- Berechnung bestimmter Integrale

$$\int_{a}^{b} f(x)dx = F(b) - F(a), \text{ wenn } F(x) \text{ eine Stammfunktion der im Intervall [a; b] stetigen Funktion } f(x)$$
 ist.

Studienkolleg (STK)

Test für Ausländische Studienbewerber, Konstanz

Literatur zur Wiederholung und Vorbereitung des Tests

- Heinrich, Gottfried; Wenzel, Horst: Übungsaufgaben zur Analysis. Mathematik für Ingenieure und Naturwissenschaftler. Wiesbaden: B. G. Teubner Verlag /GWV Fachverlage GmbH, 1. Auflage November 2005; ISBN 3-8351-0066-1
- 2. Knorrenschild , Michael: Vorkurs Mathematik : ein Übungsbuch für Fachhochschulen von Michael Knorrenschild. München : Fachbuchverlag Leipzig im Carl Hanser Verlag, 2004 dt.; 174 S. : graph. Darst.; ISBN 3-446-22818-7
- 3. Schäfer, Wolfgang: Mathematik-Vorkurs: Übungs- und Arbeitsbuch für Studienanfänger; 5., überarb. Aufl.; Stuttgart; Leipzig; Wiesbaden: Teubner, 2002; dt.; 444 S.; graph. Darst.; ISBN 3-519-10249-8

Studienkolleg (STK)

Aufgaben zur Vorbereitung der Teilnahme am TASK (Technische oder wirtschafts-/sozialwissenschaftliche Fachrichtung)

Fach Mathematik

1. Gegeben sind die Mengen

$$A = \{ x \in \mathbb{Z} \mid -1 < x < 6 \}$$

B = {
$$x \in \mathbb{N} | x \leq 3$$
}

 $C = \{ x \in \mathbb{N} \mid x \text{ ungerade und } x \leq 9 \}$

$$D = \{ x \in \mathbb{N} \mid x \text{ gerade und } x < 10 \}$$

- a) Geben Sie Mengen durch Aufzählen der Elemente an!
- b) Bestimmen Sie A \cup B, A \setminus B, B \setminus A, C \cap D, A \cap C, A \cap D, C \setminus D, (C \cup D) \setminus A
- 2. Schreiben Sie die Intervalle als Mengen reeller Zahlen in der beschreibenden Schreibweise mit Ungleichungen! Zum Beispiel: $[m; n] = \{x \in \mathbb{R} \mid m \le x \le n\}$

3. Berechnen Sie!

a)
$$\frac{1}{1,5}$$
 =

b)
$$2^{-3} =$$

c)
$$4^{2,5} =$$

b)
$$2^{-3} =$$
 c) $4^{2,5} =$ d) $\log_a 1 =$

Multiplizieren Sie folgende Ausdrücke und fassen Sie zusammen!

a)
$$(7a - 5b)(3a + 4b) - (5a - 9b)(4a - b)$$
 b) $(x + 1)(1 - x)$ c) $(2\sqrt{3} - 3\sqrt{2})^2$ d) $(a^2 + 3b)^2$

b)
$$(x + 1)(1 - x)$$

(2
$$\sqrt{3} - 3\sqrt{2}$$
)² d) (a² + 3b)

5. Verwandeln Sie in ein Produkt von Binomen!

a) 8ab + 10ac - 12bd - 15cd b)
$$4x^2$$
 - 12x + 9 c) 25a + 40 \sqrt{ab} + 16b d) 2x - 3y

b)
$$4x^2 - 12x + 9$$

c)
$$25a + 40 \sqrt{ab} + 16b$$

d)
$$2x - 3v$$

6. Vereinfachen Sie!

a)
$$\frac{x-y}{2x} - \frac{x+y}{3y}$$

$$b) \frac{\frac{1}{a} - \frac{1}{b}}{\frac{1}{a} + \frac{1}{b}}$$

a)
$$\frac{x-y}{2x} - \frac{x+y}{3y}$$
 b) $\frac{\frac{1}{a} - \frac{1}{b}}{\frac{1}{a} + \frac{1}{b}}$ c) $\frac{x^{m-1}}{y^{2+n}} \cdot \frac{y^{n-1}}{x^{m+2}} \cdot y^3$

Bestimmen Sie x! Prüfen Sie das Ergebnis mit einer Probe!

a)
$$\frac{x+2}{x-2} = \frac{x-4}{x+1}$$

a)
$$\frac{x+2}{x-2} = \frac{x-4}{x+1}$$
 b) $\sqrt{3x-3} + \sqrt{4+3x} = \sqrt{6x+25}$ c) $lg(x-1)+lg 3 = lg (x^2-1)$

c)
$$\lg(x-1)+\lg 3 = \lg (x^2-1)$$

d)
$$|-3x + 2| = 5$$

e)
$$x \cdot \ln 9 = \ln 3$$

e)
$$x \cdot \ln 9 = \ln 3$$
 f) $\sin 2x \cdot \tan x = 1$

8. Bestimmen Sie x und y!

$$4x + 3y = 8$$

$$6x + 5y = 13$$

- Die Seite b eines Rechteckes ist doppelt so lang wie die Seite a. Wie groß ist die Diagonale e des
- 10. Bestimmen Sie für die reelle Funktion y = $\sqrt[3]{x+2}$ den Definitionsbereich X und Wertebereich Y!
- 11. Bilden Sie die Umkehrfunktion von a) y = 3x 2 und b) $y = -x^3 + 1!$

Studienkolleg (STK)

12. Bilden Sie die 1. Ableitung der folgenden Funktionen f(x)!

a)
$$f(x) = \frac{1}{12}x^3 + \frac{1}{4}x^2 - \frac{7}{4}x$$
 b) $f(x) = \ln(2 + x^2)$ c) $f(x) = \frac{1}{2} \cdot e^{2x+1}$

b)f(x) = In
$$(2 + x^2)$$

c)
$$f(x) = \frac{1}{2} \cdot e^{2x+1}$$

d)
$$f(x) = x^2 \cdot \sin x$$

d)
$$f(x) = x^2 \cdot \sin x$$
 e) $f(x) = \frac{x^2 - x}{3x + 2}$ f) $f(x) = \sqrt{1 - x}$

f)
$$f(x) = \sqrt{1-x}$$

13. Gegeben ist die Funktion $f(x) = \frac{1}{2} \cdot x^3 - x$

- a) Bestimmen Sie die ersten drei Ableitungen f', f" und f""!
- b) Untersuchen Sie die mögliche Symmetrie von f(x)!
- c) Bestimmen Sie die Nullstellen, Extremstellen (Maximum; Minimum) und Wendestellen (Wendepunkt) von f(x)!
- d) Skizzieren Sie den Graph von f(x)!

14. Berechnen Sie!

a)
$$\int (x^2 - 4x) dx$$

b)
$$\int \frac{1}{\sqrt{x}} dx$$

a)
$$\int (x^2 - 4x) dx$$
 b) $\int \frac{1}{\sqrt{x}} dx$ c) $\int (2 \cdot \sin x - 3 \cdot \cos x) dx$

d)
$$\int_{-2}^{1} (-x^3 + 4) dx$$
 e) $\int_{0}^{2\pi} \cos x dx$

e)
$$\int_{0}^{2\pi} \cos x \, dx$$

Für technische Fachrichtung

1T. Ein Auto fährt von A nach B mit einer Durchschnittsgeschwindigkeit von 81 kmh⁻¹. Um wie viel Prozent der ursprünglichen Fahrzeit verkürzt sich die Fahrzeit, wenn sich die Geschwindigkeit um durchschnittlich 9 kmh⁻¹ erhöht?

Für wirtschafts-/sozialwissenschaftliche Fachrichtung

15W. In einer Verkaufsaktion wird der Preis des Produktes XXL für einen Monat um 20 % gesenkt. Auf der Grundlage des gesenkten Preises wird einen Monat später der Preis um 20 % wieder angehoben. Was kostet das Produkt XXL nach dieser Preiserhöhung, wenn der Preis vor der Marketingaktion 80 € betrug?

Lösungen

1. a)
$$A = \{0, 1, 2, 3, 4, 5\}$$
 $B = \{0, 1, 2, 3\}$ $C = \{1, 3, 5, 7, 9\}$ $D = \{2, 4, 6, 8\}$ b) $A \cup B = A$, $A \setminus B = \{4, 5\}$, $B \setminus A = \emptyset$, $C \cap D = \emptyset$, $A \cap C = \{1, 3, 5\}$, $A \cap D = \{2, 4\}$, $C \setminus D = C$, $(C \cup D) \setminus A = \{6, 7, 8, 9\}$

2. a)
$$\{x \in \mathbb{R} \mid m < x < n\}$$
 b) $\{x \in \mathbb{R} \mid m \le x < n\}$ c) $\{x \in \mathbb{R} \mid m < x \le n\}$

b)
$$\{x \in \mathbb{R} \mid m \leq x < n \}$$

c)
$$\{x \in \mathbb{R} \mid m < x \leq n\}$$

3. a)
$$\frac{2}{3}$$
 oder 0.66 b) $\frac{1}{8}$ oder 0.125 c) 32

b)
$$\frac{1}{9}$$
 oder 0,125

Studienkolleg (STK)Test für Ausländische Studienbewerber, Konstanz4. a) $a^2 + 54ab - 29b^2$ b) $1 - x^2$ c) $30 - 12\sqrt{6}$ d) $a^4 + 6a^2b + 9b^2$

4. a)
$$a^2 + 54ab - 29b^2$$

b)
$$1 - x^2$$

d)
$$a^4 + 6a^2b + 9b^2$$

5. a)
$$(2a - 3d)(4b + 5c)$$

b)
$$(2x - 3)^2$$

c)
$$(5\sqrt{a} + 4\sqrt{b})^2$$

5. a)
$$(2a - 3d)(4b + 5c)$$
 b) $(2x - 3)^2$ c) $(5\sqrt{a} + 4\sqrt{b})^2$ d) $(\sqrt{2x} + \sqrt{3y})(\sqrt{2x} - \sqrt{3y})$

6. a)
$$\frac{-2x^2 + xy - 3y^2}{6xy}$$
 b) $\frac{b-a}{b+a}$ c) x^3

$$(b-a)$$

7. a)
$$x = \frac{2}{3}$$

7. a)
$$x = \frac{2}{3}$$
 b) $x_1 = 4$, $x_2 = -\frac{13}{3}$ ist keine Lösung c) $x_1 = 2$, $x_2 = 1$ ist keine Lösung d)

c)
$$x_1 = 2$$
, $x_2 = 1$ ist keine Lösung d)

$$x_1 = -1$$
, $x_2 = \frac{7}{3}$ e) $x = \frac{1}{2}$

e)
$$X = \frac{1}{2}$$

f)
$$x = \frac{\pi}{4}(2k+1)$$
 $k \in \mathbb{Z}$

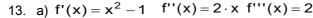
8.
$$x = \frac{1}{2}, y = 2$$

8.
$$x = \frac{1}{2}$$
, $y = 2$ 9. $e = a\sqrt{5}$ oder $\frac{b}{2}\sqrt{5}$ 10. $X = [-2; \infty[$, $Y = [0; \infty[$

11. a)
$$y = \frac{1}{3}x + \frac{2}{3}$$

11. a)
$$y = \frac{1}{3}x + \frac{2}{3}$$
 b) $y = \begin{cases} \sqrt[3]{1-x} & x \le 1 \\ -\sqrt[3]{1-x} & x > 1 \end{cases}$

12. a)
$$y' = \frac{1}{4}x^2 + \frac{1}{2}x - \frac{7}{4}$$
 b) $y' = \frac{2x}{2 + x^2}$


b)
$$y' = \frac{2x}{2 + x^2}$$

c)
$$y' = e^{2x+1}$$

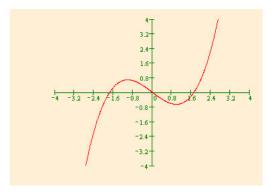
d)
$$y' = 2x \cdot \sin x + x^2 \cos x$$
 e) $y' = \frac{3x^2 + 4x - 2}{(3x + 2)^2}$

e)
$$y' = \frac{3x^2 + 4x - 2}{(3x + 2)^2}$$

f)
$$y' = -\frac{1}{2\sqrt{1-x}}$$

b)
$$f(-x) = -f(x)$$

b) f(-x) = -f(x) f(x) ist symmetrisch zu P(0;


c) Nullstellen
$$P_1(-\sqrt{3};0)$$
,

$$P_2(0;0)$$

$$P_2(0;0)$$
, $P_3(\sqrt{3};0)$

lokales Maximum $P_4(-1; \frac{2}{3})$ lokales Minimum

 $P_5(1; -\frac{2}{3})$ Wendepunkt $P_6(0;0)$

d) Graph

14. a)
$$\frac{1}{3}x^3 - 2 \cdot x^2 + C$$
 b) $2 \cdot \sqrt{x} + C$ c) $-2 \cdot \cos x - 3 \cdot \sin x + C$ d) $\frac{63}{4}$

b)
$$2 \cdot \sqrt{x} + C$$

d)
$$\frac{63}{4}$$

15T. Die Fahrzeit verkürzt sich um 10%.

15W. Das Produkt XXL kostet nach der Preiserhöhung 76,80 €.

TASK - Mathematik T/W

07

Studienkolleg (STK)

Name:	Prüfungsnummer:	
Hinweise:		
 Tragen Sie ihren Namen und ihre Prüfungsnumr 	mer ein.	
 Alle Aufgaben sind ohne <u>Taschenrechner</u> zu lös 	en.	
Als Hilfsmittel ist nur die Formelsammlung erlau	bt, die Sie mit den Aufgaben erhalten.	
Schreiben Sie auf die Rückseite, wenn der Platz	z nicht ausreicht.	
■ <u>Arbeitszeit:</u> 60 Minuten		
Aufgabe 1		
a) Berechnen Sie und Vereinfachen Sie den Term (l	Rechenweg und Ergebnis)!	
$\frac{\frac{1}{2} + \frac{1}{3}}{\frac{3}{2} - \frac{2}{3}} =$		
b) Vereinfachen Sie den Term (Rechenweg und Er	gebnis)!	01
$\frac{x+5}{x^2-25} =$		02
		03 🗌
Aufgabe 2		04 🗌
Gegeben sind $A \subseteq \mathbb{N}$ (\mathbb{N} Menge der natürlichen \mathbb{R}	Zahlen) und $B\subset\mathbb{Z}$ (\mathbb{Z} Menge der ganzen	
Zahlen). Es sei A = $\{x \mid 1 \le x < 5\}$ und B =] 3; 7		
Geben Sie alle Elemente an! (zum Beispiel: = {3; 4;		
(o, 1,	-1/	05
a) A ∪ B =		
b) B ∩ A =		06

c) A \ B =

d)	B / A =	

Aufgabe 3

Ermitteln Sie die Lösungsmenge für $\chi \in \mathbb{R}!$ (Rechenweg und Ergebnis)

$$3.1 \qquad 2 \cdot x - 3 < \frac{9 \cdot x - 4}{2}$$

11 🔲

3.2
$$x + \frac{1}{2} = \frac{3}{x}$$

$$3.3 \ \sqrt{x} - \sqrt{2x - 1} = \sqrt{x - 1}$$

Fortsetzung Aufgabe 3: Berechnen Sie!	(Rechenweg und Ergebnis	;)
---------------------------------------	-------------------------	----

3.4
$$6 \cdot \sin x - \frac{3}{\cot x} = 0$$
 für $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right] \setminus \{0\}$

- 19
- 20
- 21
- 22

3.5
$$(a^{x+3})^{x-3} = (a^{x-5})^{x+9}$$

- 23
- 24
- 25 🗌
- 26

Aufgabe 4

Bestimmen Sie von der reellen Funktion $y = f(x) = \sqrt{x-3}$

a) den Definitionsbereich X,

X =

b) den Wertebereich Y,

Y =

27

28

c) die Umkehrfunktion $f^{-1}(x)$ (Rechenweg und Ergebnis)

- 29
- 30

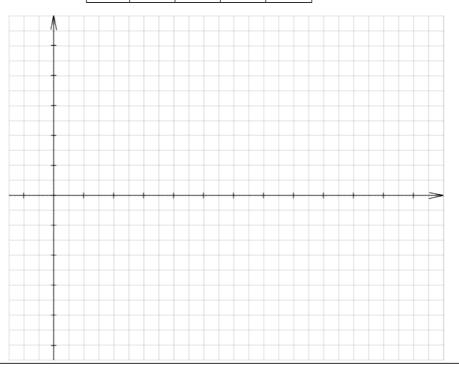
ette.	

Fortsetzung Aufgabe 4: Bestimmen Sie von der reellen Funktion $y = f(x) = \sqrt{x-3}$

d) die Nullstelle von f(x) (Rechenweg und Ergebnis)

32

31


e) die 1. Ableitung f'(x)

33

34

f) Zeichnen Sie das Bild (Graph) der Funktion f(x)! Berechnen Sie dazu eine Wertetabelle mit drei Funktionswerten!

Х	3	4	7	12
у				

35

36

Lösen Sie nur <u>eine</u> der folgenden Aufgaben! Kreuzen Sie die gewählte Aufgabe an:	
☐ Aufgabe 5T (Aufgabe nur für Bewerber der technischen Fachrichtung)	
Beantworten Sie! (Rechenweg und Ergebnis)	
Der Durchmesser d₁ eines Öltanks (Kreiszylinder) soll um 20% verkleinert werden. Um wie viel Prozent verringert sich das Volumen V₁?	
☐ Aufgabe 5W (Aufgabe nur für Bewerber der Fachrichtung Wirtschaft/Sozialwissenschaft)	
Die Mehrwertsteuer(= p % vom Nettopreis) ist eine Umsatzsteuer: Bruttopreis = Nettopreis + Mehrwertsteuer Ein Auto kostet mit Mehrwertsteuer 23.200 Euro. Wie viel kostet das Auto, wenn die Mehrwertsteuer von 16 % auf 19 % erhöht wird?	
	37 🗌
	38
	39
	40

Test für Ausländische Studienbewerber, Konstanz

Studienkolleg (STK)

Zeichen	Sprechweise / Bedeutung	Zeichen	Sprechweise / Bedeutung
< <	kleiner als kleiner oder gleich	sin	Sinus
> <u>></u>	größer als größer oder gleich	cos	Kosinus
%	Prozent	tan	Tangens
] a, b [offenes Intervall von a bis b	cot	Kotangens
[a, b]	abgeschlossenes Intervall von a bis b	A, B, M	Mengen
[a, b[halboffenes Intervall von a bis b	{ a; b}	Menge mit den Elementen a und b
œ	unendlich	Ø {}	leere Menge
f(x)	f von x (Wert der Funktion f an der Stelle x)	{x }	Menge aller x, für die gilt:
f(x)	Ableitung der Funktion f	A∩B	Durchschnittsmenge von A und B
dy dx	dy nach dx, 1 Differentialquotient der Funktion y = f(x)	AUB	Vereinigungsmenge von A und B
a ^b	a hoch b (Potenz)	Α\B	Differenzmenge von A und B
√ √	Quadratwurzel aus n-te Wurzel aus	N	Menge der natürlichen Zahlen
log _a x	Logarithmus x zur Basis a	Z	Menge der ganzen Zahlen
lg x	Logarithmus x zur Basis 10	Q+	Menge der gebrochenen Zahlen
ln x	Logarithmus x zur Basis e	Q	Menge der rationalen Zahlen
bх	Logarithmus x zur Basis 2	R	Menge der reellen Zahlen
D	Definitionsbereich einer Funktion	W	Wertebereich einer Funktion

Potenzen		Wu	urzeln	Logarit	hmen
a ⁿ = a·a··a a ⁰ = 1 a ¹ = a	aBasis nExponent a c R \{0\}, n c N	Va - b⇔b ⁿ - a b>0 a∈R∧a≥0,	nWurzelexponent	$\log_a b = c \Leftrightarrow a^c = b$ $a \in \mathbb{R}, a > 0, a = 1$ $b \in \mathbb{R}, b > 0$	aBasis bNumerus
$a^{-n} = \frac{1}{a^n}$ $a^m \cdot a^n = a^{m+n}$ $\frac{a^m}{a^n} = a^{m-n}$	$a^n \cdot b^n - (a \cdot b)^n$ $\frac{a^n}{b^n} - \left(\frac{a}{b}\right)^n$	8830	$ \sqrt[a]{a} \cdot \sqrt[a]{b} = \sqrt[a]{a \cdot b} $ $ \sqrt[a]{a} = \sqrt[a]{\frac{a}{b}} $	$\log_a(u \cdot v) = \log_a u + 1$ mit u, v e R und u, $\log_a \frac{u}{v} = \log_a u - \log_a u$	v > 0 , v
(a ^m) ⁿ – a ^{mn} a ⁿ – √a	$a^{-\frac{1}{n}} - \frac{1}{\sqrt[n]{a}}$	√√a - ™√a a ^m / _n - √a ^m	$a^{-\frac{m}{n}} - \frac{1}{\sqrt[n]{a^m}}$	$\log_3 \sqrt{u} = r \cdot \log_3 u$ $\log_3 \sqrt{u} = \frac{1}{n} \log_3 u$	re R ne N

	allgemeine Form	Normalform	
Gleichung	ax2 +bx+c = 0	$x^2 + px + q = 0$	
Lösungen	$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$x_{12} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$	a,b,c,p,q ∈ R; a ≠ 0
Diskriminante	D = b ² - 4ac	$D = \left(\frac{p}{2}\right)^2 - q$	a,b,c,p,q sind Konstanten
		$D > 0 \implies L = \{x_1; x_2\}$	SS
Lösung in R		$D = 0 \implies L = \{x_1\} = \{x_2\}$	
		D<0 ⇒ L=Ø	

roportiona	litä	t				
		S	achverhalt	Proportionalität	Verhältnisgleichung	
Größe A	а	С	(a < c)			
Größe B le mehr (gr	b d (b < d) größer) A, desto mehr (größer) B		NAME OF SAME O	direkte Proportionalität	$\frac{a}{b} = \frac{c}{d} \implies a \cdot d = b \cdot c$	
Größe A	a	С	(a < c)			
Größe B	b	d	(b > d)	indirekte (oder umgekehrte) Proportionalität	$\frac{a}{b} = \frac{d}{c} \implies a \cdot c = b \cdot d$	
le mehr (gr	ōβe	er) A	, desto weniger (kleiner) B			

	sin a	BANKAN
$\sin^2 \alpha + \cos^2 \alpha = 1$	$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$	$1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}$
**	cot a = cos a	1+ cot ² α = 1

	0°	30°	45°	60°	90°	120°	135°	150°	180°
	0	<u>π</u>	$\frac{\pi}{4}$	<u>π</u> 3	$\frac{\pi}{2}$	<u>2π</u> 3	<u>3π</u> 4	<u>5π</u> 6	π
y = sin x	0	1/2	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	1 2	0
/ = cos x	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	1/2	0	$-\frac{1}{2}$	$-\frac{1}{2}\sqrt{2}$	$-\frac{1}{2}\sqrt{3}$	-1
y = tan x	0	$\frac{1}{3}\sqrt{3}$	1	√3		- √3	-1	$-\frac{1}{3}\sqrt{3}$	0

Studienkolleg (STK)

Test für Ausländische Studienbewerber, Konstanz

Ableitungen spezielle	r Funktionen	inktionen Nenner				
f(x)	f(x)	f"(x)	f(x)	f(x)	f'(x)	
sin x	cos x	– sin x	arcsin x	$\frac{1}{\sqrt{1-x^2}}$	$\frac{x}{(1-x^2)\sqrt{1-x^2}}$	
CO5 X	– sin x	-cos x	arccos x	$-\frac{1}{\sqrt{1-x^2}}$	$\frac{-x}{(1-x^2)\sqrt{1-x^2}}$	
$\tan x$ $(x \neq (2n+1)\frac{\pi}{2}, n \in \mathbb{Z}$	$\frac{1}{\cos^2 x} = 1 + \tan^2 x$	2 tan x(1 + tan ² x)	arctan x	1 1+x ²	$\frac{-2x}{(1+x^2)^2}$	
a* (a > 0)	a ^x Ina	a ^x (lna) ²	e ^x	e ^x	e ^x	
log _a x (a > 0,a + 1,x > 0)	1 x · Ina	-1 x² ⋅lna	ln x	1 x	$-\frac{1}{x^2}$	

Differentiationsregeln	$u(x), v(x)$ differenzierbar; $C \in \mathbb{R}$
Faktorregel	y - c · u ⇒ y' - c · u'
Summenregel	y - u ± v ⇒ y' - u' ± v'
Produktregel	y = u · v ⇒ y'= u'·v + u · v'
Quotientenregel	$y - \frac{u}{v}(v - 0) \Rightarrow y' - \frac{u'v - uv'}{v^2}$
Kettenregel	$y = f(u) \text{ mit } u = g(x) \implies y' = f'(u) \cdot g'(x)$

Untersuchung von Funkti	onen	f(:	k) ist mindestens zweimal differenzierbar
Symmetrie	symmetrisch zur y-Achse	gerade Funktion	f(x) = f(−x) x ∈ D
	punktsymmetrisch zu P(0;0)	ungerade Funktion	f(-x) = -f(x) x = D
Nullstelle	x_0 mit $f(x_0) = 0$ und x_0 e	D	
Monotonie	monoton wachsend in [a,b]	f'(x) > 0 für alle x	= [a,b]
	monoton fallend in [a,b]	f'(x) < 0 für alle x	= [a,b]
lokale Extremstellen	x _E ist Maximumstelle	f'(x _E) = 0 und f''(:	x _E) < 0
	x _E ist Minimumstelle	f'(x _E) = 0 und f''(x _E)>0
Wendestelle	x _W ist Wendestelle	f''(x _w) = 0 und f''	'(× _W) ≠ 0

Grundbegriffe der Integralrechnung		
Stammfunktion	F(x) ist Stammfunktion von f	$f(x) \Leftrightarrow F'(x) = f(x)$
unbestimmtes Integral	$\int f(x) dx = F(x) + C$	C Integrationskonstante
bestimmtes Integral	$\int_{a}^{b} f(x) dx - F(b) - F(a)$	
Eigenschaften des bestimmten Integrals	$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$	$\int_{a}^{b} f(x) dx - \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx \text{ für } c \in [a, b]$

∫0 dx = C	$\int dx = x + C$	$\int a dx = ax + C (a \neq 0)$
$\int x dx = \frac{1}{2}x^2 + C$	$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + C (n \in \mathbb{R}, \ n \neq -1)$	$\int \frac{1}{x} dx = \ln x + C$
$\int \sqrt{x} dx = \frac{2}{3} \cdot \sqrt{x^3} + C$	$\int a^x dx - \frac{a^x}{\ln a} + C (a = 1)$	$\int e^x dx = e^x + C$
$\int \frac{1}{\sqrt{x}} dx = 2 \cdot \sqrt{x} + C (x > 0)$	∫sin x dx = −cos x + C	∫cos x dx = sin x + C